A fantasy adventure game as a learning environment: Why

learning to program is so difficult and what can be done about it.

Robert Moser

School of Computer Science and Engineering
University of New South Wales

moser@cse.unsw.edu.au

Abstract

A number of factors contribute to the difficulty of learning
computer programming, and by examining some of these factors
we can hope to design an environment that is more conducive to
the learning process. 1 analyse some of these problems and find
that one possible solution is to embed the educational content
into a fantasy adventure game. Designing an educational game
is, however, fraught with difficulties beyond those normally
associated with writing such a program, as there are conflicts
between educational and entertainment goals. Described are a
few of these conflicts from the early stages of my project, and
the compromises that they have engendered.

1.0 Why is Computer Programming So
Hard?

Learning to program computers is a difficult process. Much like
the process of acquiring any new language, becoming fluent in a
modern programming language requires many different layers of
skills built one atop another until the leamer can piece letters
together into words, words into sentences, and sentences into
paragraphs or lines of a sonnet. On top of these difficulties add
the fact that programming languages are artificial - designed to
communicate in the unfamiliar realm of the computer rather than
the natural world that we all grew up experiencing - and you are
confronted by a daunting task indeed. Yet by trying to better
understand some of the factors that contribute to this difficulty
we can design a learning environment which will help the
student along the road to understanding.

1.1 Programming is a multi-layered skill.
Programming isn't a single skill; it is a multi-layered hierarchy
of skills, many layers of which will be active at the same time.
Research on the learning patterns of students[1] shows that they
acquire these skills from the bottom up, learning syntax before
structure before style. During this process many bad habits can
be learned on higher levels while the attention is focused on the
lower.

1.2 It is unrelated to much of day-to-day
experience.

The programmer’s basic building blocks are, in their formal
senses, alien to the computer novice. The learner is constrained
to the bottom-up learning method described above by their lack

Permission to make digitai/hard copy of part or all this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the titie of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ITICSE ‘97 Uppsala, Sweden
© 1997 ACM 0-89791-923-8/97/0006...$3.50

114

of any previous knowledge, and the nearest parallels to
programming for most people - language and mathematics - are
full of misleading instances of negative transfer (a formal "or",
for example, does not equate to the "or" of the average English
speaker.)

1.3 It is learned in a single context.

According to schema theory we abstract from multiple examples
an underlying structure that helps us to more easily store large
amounts of information[9). The skills of the programmer,
however, are learned in a single context at a time; a constraint
imposed by the necessity of learning the syntax of a specific
language before any application of the skills can take place.
This single context of learning makes it more difficult to derive
schema for the use of those skills, while large increases in
flexibility can be seen in students learning their second language
and thereby working in a different context.

1.4 It is boring.

Syntax of programming languages is almost invariably obtuse,
and for (at least partially valid) reasons that the beginner cannot
hope to understand. In addition, most beginning subjects in
programming are aimed at age groups, not skill levels. Students
of the same age but of widely differing computer experience are
alternately overwhelmed or bored by the same course.

1.5 It is intimidating.

Many people, particularly older generations and younger
women, find computers in general and programming specifically
to be a very intimidating area. These people will simply never
try it, because they have labelled it as "too hard."

2.0 A proposed solution.

A proposed solution to the problem is to design a fantasy
adventure game to teach basic programming skills. By working
on a metaphorical level with a restricted programming language
we allow the students to work with higher-level concepts before
learning the details of a full general-purpose programming
language. By setting the game in a completely different context
from normal programming we encourage the abstraction of
schema and situate the learning process in a more familiar
environment. A one-on-one interaction with the computer
allows the learner to progress at their own pace. Finally, a game
is both non-threatening and fun, allowing us to take advantage
of the known benefits of self-motivated learning.

The choice of a fantasy adventure as the solution to the these
difficulties was not made by chance. In addition to helping to
solve the problems inherent in the educational content,
significant bodies of research in the areas of educational
psychology, learning theory, and engagement support various
aspects of the genre as appropriate for the task. Specifically,
engagement[3,5], embedding the learning process into an

external environment{4], stimulating the student’s curiosity[8,6],
the vivid imagery of fantasy{2,10], and using intrinsic fantasy as
educational rewards[8] have all been cited as aiding in the
acquisition of new knowledge and skills. Finally, in the most
practical sense, there is a direct mapping from programming
computers to the concept of magic in a fantasy world.

3.0 Constructing the game; lessons from the
trenches.

While the problems inimical to computer programming and the
research in various fields seem to agree on the choice of a
fantasy adventure game as a good potential learning
environment, there is much less agreement when it comes to the
actual structure and construction of that game. Where in the
normal course of software design we would be concentrating on
the user’s goals, we find ourselves confronted with two different
users with very different sets of priorities; the player desires to
be entertained, but the instructor wants the student to learn.
Different aspects of instructional and game design contradict as
well as reinforce one another - compromises must be made.

3.1 Conflict: instructional vs. game design.

The primary influence on the construction of an educational
game should be that of the instructional content itself. In this
case we want to acquaint the student with a sample of some
basic control structures common to many computer languages
before introducing them to some higher-level concepts, so I
chose to work with the following programming elements:
assignments, boolean expressions, code blocks, conditionals,
iterative loops, and conditional loops. Systems for designing
classroom interactions can be partially utilised for the game to
create ordered hierarchies of sub-skills for each of these skills,
and lessons associated with each sub-skill which will scaffold
the user through the learning process.

Unfortunately this very structured mapping of the learner’s
progress through the game conflicts with some of the basic
tenets of engagement theory. Brenda Laurel tells us that the
user’s feeling of involvement is strongly tied to the range and
impact of choices available to them{7]; by leading them through
a predetermined sequence we reduce their choices to those of
minimal consequence. It also greatly lessens the benefits of
exploratory learning and exciting the curiosity of the user by
removing a large portion of the unknown from the game. Yet
the open, exploratory model suggested by these disciplines
leaves no room for directing the learning process.

3.2 Compromise: a tiered structure.

Instead of giving up the benefits of either in exchange for the
other, I chose to combine the two in something of a tiered
structure; focal points in the learning process are identified and
embedded in “funnelling” scenes in the plot, and these points act
as gateways between freely explorable areas. We can thus
assure that more difficult problems are not encountered until
some scaffolding action has occurred, and it has the added
benefit of allowing us direct the overall shape of the plot in a
dramatically exciting and satisfactory manner while leaving the
user their freedom of action.

The process of crafting all of this theory into an actual
functional game structure turned out to be a cyclical one; from
instructional content to plotline and back again. First, the initial
focal points were found in the skill hierarchies. These tended to
correspond to prerequisite knowledge needed to use the skill,

115

and were mostly very simple (for example, learning about
conditionals is impossible without some idea of basic
comparisons.) Having determined what basic skills the learner
should have acquired by this point, I designed a series of tests to
check on their proficiency at these skills. These tests are then
woven into the fabric of the plot(which so far consists of a
fantasy world with the player as an inexperienced practitioner of
magic) to form a consistent whole:

"An apprentice wizard, your master has left you on your
own in his tower. He (or she) has left a magical
guardian at the door who will not let you out until..."

Perhaps the apprentice must demonstrate that he/she has
completed their lessons for the day, or finished their chores, or
done something nice for the guardian itself; these are the tests,
embedded into the plot. From this point it is reasonably simple
to describe the confines of the tower (which the user can freely
explore) and to invent interactions that will help the user to learn
the material tested for at the focal point - the guardian at the
door. These interactions can be discovered and completed in any
order, or even not at all, but so long as the learner has not yet
demonstrated sufficient mastery they cannot progress beyond
that point.

Now the process is repeated a second time, at a further remove.
Having shown an understanding of prerequisite skills, the
student is ready to be introduced to the next stages in the skill
hierarchies. Again there is a new area to explore - the city
outside the tower - and again there is a barrier to that exploration
- a wall around the city, and a guarded gate. The gate is the next
focal point, beyond which the design cycle can repeat still
further, as necessary (I have found three repetitions sufficient so
far.) Each of these funnels in the action acts as a mini-climax in
an overall plot(e.g. finding and rescuing your lost master,)
building tension towards the final dramatic conclusion.

4.0 Where now?

Having reconciled warring elements of theory in my design of
the plotline, I now turn to the task of building the environment
itself. Still in progress are the construction of a parser for my
simplified programming language, the design of the game’s
interface, and the coding of the game engine itself. The
resulting environment will be evaluated for transfer to
programming so that the effectiveness of the technique can be
determined.

References:

1. Bereiter, C. & Ng, E. "Three levels of goal orientation in
learning." The Journal of the Learning Sciences 1 (3&4)
1991.

2. Bower, GH,, in L.W. Gregg(ed.), Cognition in Learning
and Memory. New York: Wiley, 1972.

3. Bowman, RF., Jr. "A Pac-Man Theory of Motivation:
Tactical Implications for Classroom Instruction.”
Educational Technology 22(9) 1982.

4. Brown, J.S,, Collins, A., & Duguid, P. "Situated Cognition
and the Culture of Leaming." Educational Researcher v.18
no.1 1989.

10.

Celsi, Richard L., & Olson, Jerry C. "The Role of
Involvement in Attention and Comprehension Processes."
Journal of Consumer Research Sept. 1988.

Collins, A. & Stevens, A.L., "Goals and Strategies of
Inquiry Teachers.” in R. Glaser(ed.), Advances in
Instructional Technology vol2. Hillsdale, N.J.: Lawrence
Erlbaum Associates, 1981.

Laurel, Brenda, Computers as Theater. Reading, MA:
Addison-Wesley, 1991.

Malone, Thomas W., "Toward a Theory of Intrinsically
Motivating Instruction.” Cognitive Science 4 1981.

Norman, D. A. & Rumelhart, D. E. "Representation in
memory." in R. C. Atkinson, J. J. Hermstein, G. Lindzey,
& R. D. Luce (Eds.) Handbook of Experimental
Psychology. New York: Wiley, 1988.

Paivio, A., Imagery and verbal processes. New York: Holt,
Rinehart, & Winston, 1971.

116

