
Pre-Games:
Games Designed to Introduce CS1 and CS2 Programming

Assignments

Ray Giguette
Computer Science Department

Nicholls State University
Thibodaux, Louisiana 70310

giguette@msn.com

Abstract
Many CS1 and CS2 instructors have been using game-like
assignments and manipulatives to increase student understanding
of abstract concepts. A related approach described in this paper
requires students to play a game-like version of each assignment
(referred to as the “pre-game”) before designing and coding their
own programs. Students complete a prototype of the pre-game
that uses simpler I/O but otherwise follows the same specification.
By playing the pre-game, students become familiar with lesson
principles using a concrete example that combines the advantages
of both game-play and manipulatives. Ideally, the pre-game
creates an environment that both encourages experimentation, and
allows students to use their intuition when designing algorithms
and data structures.

Categories and Subject Descriptors

K.3 [Computers and Education]: Computer and Information
Science Education – Computer Science Education.

General Terms
Algorithms, Design, Experimentation.

Keywords
CS1, CS2, Data Structures, Visualization, Pedagogy.

1 Introduction
Various methods have been used to create more interesting CS1
and CS2 assignments. Examples include assigning game-like
programs [3,4,6], programs simulating real-world data structures
(e.g., simulating operating system queues) [2], or introducing
concrete examples of data structures, such as binary trees made
from PVC pipe [1].

Permission to make digital or hand copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, require prior
specific permission and/or a fee.

SIGCSE 2003, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002…..$5.00

However, certain factors may limit the usefulness of these
methods. Though using hands-on manipulatives can increase
student understanding of abstract concepts [5], they tend to be
practical only for the simplest concepts and structures. It may be
difficult, for instance, to invent manipulatives representing
structures such as heaps or hash tables, or dynamic concepts such
as tree traversal or recursion.

And though students have no trouble playing games, they often
have trouble programming them. Implementing realistic details,
flexible user interfaces, or interesting graphics is beyond the
capabilities of many CS1/CS2 students. To keep assignments
doable, complexity unrelated to the lesson must be minimized.
For instance, text output must be substituted for graphics and
animation. Consequently, game assignments often resemble early
versions of Pong or Adventure, rather than the CD-ROM games
attractive to students.

The approach introduced in this paper is to have students play a
game-like version of each assignment (referred to as the “pre-
game”) before designing and coding their own programs. Students
are assigned to implement a prototype of the pre-game that uses
simpler I/O and graphics but otherwise follows the same
specification. The pre-game may therefore freely incorporate
interaction, animation, user interfaces, etc. that enhance its
playability. By playing the pre-game, students become familiar
with lesson principles using an interesting, concrete example that
combines the advantages of both game-play and manipulatives.

2 Common Student Problems
Instructors are experimenting with game-like assignments
and manipulatives in an attempt to address common
problems encountered by many CS1 and CS2 students. A
few of these problems are listed below:

1. Following instructions. Students have trouble following

written instructions, often ignoring or misreading important
details of program requirements. Some depend on their
perhaps incomplete memories of class lectures, rather than
re-reading the assignment. Even class discussions are often
inadequate, if they consist of notes and diagrams drawn on a
black board. To young learners, especially those visually or
manually oriented, a static, written description does not fully
capture the dynamic qualities of an algorithm or data
structure.

288

2. Working through problems. Too often, students faced
with a programming quandary are unwilling to work through
the problem. They immediately stop and ask for assistance,
or just stop altogether. Yet nothing is more valuable than the
experience of working through such problems, if possible,
unassisted. Students’ unwillingness to push ahead is due
partially to their resistance to experimentation. Viewing the
results of minute alterations to a binary tree is not the
average student’s idea of a good time. They become
frustrated, for instance, comparing a tree stored as a list or
array to a tree-like representation drawn on paper. Though
students must learn to accomplish such tasks, an environment
that facilitates experimentation would be helpful.

3. Designing algorithms. CS1 and CS2 students often do

not understand what an algorithm is. Many are convinced
that an “algorithm” must be something cryptic and
unfamiliar. Others mistake the problem statement or the
program code for the algorithm. Students therefore have
difficulty designing algorithms, and cannot understand why a
design is even necessary. These problems may be alleviated
if the algorithms could be presented in a different manner,
one less abstract and more intuitive.

To summarize, it would be helpful to reinforce the static, written
problem statement with a dynamic, visual, one, and to create a
programming environment that both encourages experimentation
and allows students to use their intuition when designing
algorithms and data structures.

3 Advantages Of Pre-Games
The problems listed above are not new, but hopefully the use of
Pre-games represents a new approach to addressing them, by
doing the following:

1. Presenting concrete examples. Pre-games have many
advantages of animated algorithms, while being less abstract.
Using a data structure in a game makes it more familiar and
intuitive. Using a mouse to manipulate a data structure on a
computer screen encourages students to learn both manually
and visually. The pre-game, which, except for its I/O
follows the same specification as the programming
assignment, acts as a dynamic, visual version of the problem
definition.

2. Providing an environment for experimentation.

Students expect games to be challenging; they do not quit
when they encounter a roadblock, because these
“roadblocks” are what make the game enjoyable. It is hoped
that students will adopt this mindset when playing a pre-
game. If a pre-game presents an environment in which new
ideas and strategies can be easily tested, students may spend
more time working through problems before seeking help.

3. Regarding algorithms as “strategies”. Equating an

assignment with a game encourages students to design
algorithms in two stages:

a) First, define the rules of the game.
b) Second, define a winning strategy.

For instance, the algorithm for a solitaire Tic Tac Toe
program must both enforce the rules of the game and
implement a strategy for making computer moves. While the
first part is clearly defined and relatively simple, the second
is less so, and allows students to develop their own ideas.
Students may have to play a game a few times to fully
understand it; what works in one case may not work in all
cases. Students can thus compare strategies that are always
successful, to ones that succeed most of the time, to ones that
usually fail. They may come to understand that designing a
general algorithm is similar to developing a winning game
strategy.

 Figure 1. Stack Pre-Game Screenshot

289

4 Pre-Game Examples
The following pre-games were created using the MicroWorlds
programming environment1. MicroWorlds has built-in graphics,
interface, and animation capabilities that increase game
playability. These games introduce students to data structures
such as stacks, graphs, and trees, and their related algorithms.
They are presented as individual assignments connected by a story
involving the lost treasure of the Aztecs. In each pre-game, the
student plays the part of a treasure-hunting explorer.

4.1 The Stack Pre-Game
The explorer finds himself in a room with two shelves containing
16 stone blocks, each bearing the name of a different Aztec god
(Figure 1). For instance, one block is labeled “Bacab: father of
Quetzalcoatl”. Another block, labeled “Quetzalcoatl”, lies
partially concealed in a spring-loaded recess in the floor. The
explorer discovers that he can pick up shelved blocks and place
them one at a time on top of the Quetzalcoatl block. However, the
weight of each extra block causes the stack to sink further into the
floor, so that only the top block is visible at any time.

The explorer’s job is to stack some of the shelved blocks on top of
the Quetzalcoatl block so that they trace the lineage from
Quetzalcoatl to his ancestor Nofumar. This is accomplished by
first placing one of Quetzalcoatl’s parents on the stack, then a
parent of that parent, and so on, working backwards until the
Nofumar block is on the top of the stack.

If at any step the explorer selects the wrong ancestor, he will
eventually reach a dead end. He must therefore develop a strategy
for adding and removing blocks, and keeping track of which

1 MicroWorlds is a registered trademark of Logo Computer
Systems, Incorporated.

blocks have already been tried. (If the explorer is clever, he can
use a nearby pool of lava to dispose of blocks removed from the
stack.)

The game allows the student to manipulate a stack and experiment
with backtracking. Some students may “cheat” by looking ahead
to find the correct sequence of gods. It can then be pointed out
that this strategy would be difficult to program efficiently,
especially for 10,000 blocks instead of 16. Instead the student
must invent a general strategy that works for any set of gods, and
takes into account the possibility that there may be no direct
lineage between two arbitrary gods.

The need for a general strategy would be more apparent if a
random set of god’s was created each time the game was played.
However, because this would increase the difficulty of the
assignment, it is better left as an extra-credit option.

4.2 The Graph Pre-Game
The explorer finds himself in the entrance to a 16-room maze
(Figure 2). The rooms are numbered; he is in room 1 and he must
find room 16. Each room connects to up to four other rooms (to
the north, south, east, and west). Some of the doors have been
booby-trapped, so he must examine each door before going
through it. If he finds a trap, he can remove it using a stick of
dynamite.

The explorer has a map and three sticks of dynamite. His map
appears to be a checkerboard, but is actually a color-coded 16 x
16 adjacency matrix. I.e., the square at row j, column k represents
the door between rooms j and k. Initially, all map squares are

yellow, indicating that the doorways have not yet been searched
for traps. When a doorway is searched, the map-square turns
either green (if no trap is found) or red (if a trap is found).

Figure 2. Graph Pre-Game Screenshot

290

To play the game, students must be able to read and modify the
adjacency matrix. To examine a doorway, the explorer sets two
values, using two sliders, representing the row and column. To
remove a trap, the explored must likewise indicate the row and
column of the doorway. Removing a trap uses up one stick of
dynamite.

The strategy for this game is not as obvious as in the stack pre-
game, and students are encouraged to come up with their own
strategy. Initially, they may wander through the maze, arbitrarily
removing traps. Because the number and position of traps is
randomly determined, the game might be played a few times
before students encounter the “worst case” scenario, which forces
them to find the shortest path through the maze in order to
minimize dynamite use.

As an extra credit assignment, the difficulty of the game can be
adjusted by altering either the number of traps or the amount of
dynamite. However, if too many traps are created, even the best
strategy will not work.

4.3 The Binary Tree Pre-Game
The explorer finds himself in front of a door with the sign “ATM2
inside” (Figure 3). He is instructed to open the door to the
treasure room by inputting his PIN, a 4-letter code.

2 Aztec Treasure of Montezuma

On the floor are two tiles: one black the other white. These sink
into the floor when stepped on, then pop up when released. (The
student uses the mouse to select a particular tile.) When a tile is
depressed, the corresponding letter (either B or W) appears in a
display. In this way, a sequence of Bs and Ws may be entered.
There is also a “back up” key, which erases the last letter entered.

To enter his PIN, the explorer must step on the tiles in a particular
sequence. For instance, one possible sequence is B, W, B, B.
Unfortunately, the explorer does not know his PIN, so he must
enter every possible permutation of Bs and Ws of length four until
he finds the one that opens the door. He can do this the hard way,
by “manually” entering all 16 4-letter sequences, keeping track of
which sequences have been tried, and which have not. Or he can
use the binary tree attached to the wall to create and test all
possible 4-letter sequences.

Each edge of the tree is a wooden ledge, and each node is a button
labeled either “B” or “W”. A node’s label can be toggled by
clicking on it. Initially, all nodes are labeled “W”.

The tree has four levels. At the top of the tree is a boulder
which, if pushed, will travel up and down the tree ledges in
a pre-order traversal. Each time the boulder rolls down a
ledge to a node, that node is displayed. Each time the

boulder bounces up a ledge, the last letter is erased from
the display. Whenever the boulder reaches a leaf node, the

Figure 3. Binary Tree Pre-Game Screenshot

291

4-letter sequence appearing on the display is automatically
tested to see if it opens the door.

Rolling the boulder thus causes sequences of Bs and Ws to be
entered into the display. The sequences formed depend on the
values of the tree nodes. Initially, because all the nodes are set to
W, the sequence “WWWW” is entered repeatedly. The explorer
must determine how to change the node values so that a pre-order
traversal of the tree will form all possible 4-letter sequences. To
encourage a general solution, a random PIN is selected each time
the game is played.

The solution is relatively simple (e.g., assign each left child a “W”
and each right child a “B”). However, students often have
difficulty manipulating a tree to achieve this solution in a normal
programming environment. The pre-game allows students to
more easily see the result of modifying the data stored in a binary
tree.

A strategy sometimes used by students is to randomly change
node values until, by luck, a traversal creates the correct PIN
value. However, students are warned that this strategy will
prevent them from succeeding in the next part of the pre-game, in
which they must implement the recursive algorithm needed to
traverse the tree.

5 Conclusion
It is hoped that presenting CS1 and CS2 concepts in the form of a
game will make students more receptive and work harder. An
underlying assumption is that the more interesting the pre-game,
the more effective it will be. The ultimate pre-game would be as
enjoyable as a “real” game, and could only be won by
understanding its underlying algorithms and data structures.

Pre-game playability can be enhanced as long as any resulting
increase in complexity is omitted from the student assignment.
This difference in complexity between the pre-game and the

corresponding assignment allows students to select their own
level of achievement. Average students can complete the basic
assignment, while superior students can program a more complete
prototype, by incorporating better strategy or I/O, or by modifying
the game rules.

The pre-games presented in this paper are relatively simple and
relatively new, and their ultimate usefulness is a subject of further
research.

References

[1] Bucci, P., Long, T., Weide, B., and Hollingsworth, J. (2000).
Toys Are Us: Presenting Mathematical Concepts on
CS1/CS2, Proceeding of the Frontiers in Education

Conference, Kansas City, Missouri, F4B1– F4B6.
[2] Jimenez-Peris, R., Khuri, S., and Patino-Martinez, M.,

(1999). Adding Breadth to CS1 and CS2 Courses Through
Visual and Interactive Programming Projects, Proceedings of

the 30th SIGSCE Technical Symposium on Computer Science

Education, New Orleans, Louisiana, 252-256.
[3] Liss, I., and McMillan, T. (1988). An Amazing Exercise in

Recursion for CS1 and CS2, , Proceedings of the 19th

SIGSCE Technical Symposium on Computer Science

Education, Atlanta Georgia, 270-274.
[4] Reese, D. (2000) Using Multiplayer Games to Teach

Interprocess Communication Mechanisms, SICSCE Bulletin,
32, 4, 45-47.

[5] Resnick, F., Martin, F., Berg, R., Borovoy, R., Colella, V.,
Kramer, K., and Silverman, B. (1998). Digital
Manipulatives: New Toys to Think With, Conference
Proceeding on Human Factors and Computing Systems, Los
Angeles, California, 281-287.

[6] Stone, D., and Schmalzel, J. (1999). A CS1 Maze Lab, Using
Joysticks and MIPPETs, Proceedings of the 30th SIGSCE

Technical Symposium on Computer Science Education, New
Orleans, Louisiana, 170-173.

292

