
Games as a “Flavor” of CS1

Jessica D. Bayliss
Rochester Institute of Technology

Rochester, NY 14623
585-475-2507

jdb[at]cs[dot]rit[dot]edu

Sean Strout
Rochester Institute of Technology

Rochester, NY 14623
585-4754599

sps[at]cs[dot]rit[dot]edu

ABSTRACT
Introductory programming courses have a specific set of expected
outcomes. One of the most often heard complaints in such courses
is that they are divorced from the reality of application.
Unfortunately, it is difficult to find areas for application that all
students have the background knowledge for and that are
engaging and challenging. One such area is computer games and
we have developed a cohesive CS1 course that provides
traditional outcomes from within the context of games as an
application area in both the lecture and lab components of the
course. This course was piloted as a ten-week distance program
for incoming computer science students with the defining features
that the program carried no academic credit and offered no end
grades. We discuss the overwhelming interest in this course as
well as objective and suobjective student experiences. One of the
most important outcomes of the summer course was that it
brought students with similar interests and goals together. We
discuss this and the different ways we have found to discuss
computer science course topics from within a games context.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Algorithms, Design, Languages

Keywords
Games, CS1, Video Games

1. INTRODUCTION
Introductory programming sequences teach the core concepts of
the computer science discipline: object-oriented programming,
software engineering, data structures, and algorithms. Much like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

musicians, who take music theory in order to understand and
compose written music, but must also take instrument lessons in
order to practice the skill of playing a musical instrument,
computer scientists must learn the theory of their field, but must
also practice the skill of programming. This is apparent in many
courses where there are separate lecture and lab course
components. Unlike the field of music, computer scientists
ordinarily need to apply the theory and logic of computing to one
or more application areas. These areas can range from biology to
art to operating systems, but all have one thing in common:
students need a certain amount of background in the application
field in order understand why they are creating the program.
Giving students this background takes time, unless the
background is very simple or students have previous knowledge
of the area.

As an example where background knowledge can help students
understand, consider the many object-oriented employee payroll
type of examples in CS1 Java books. Do these examples mean
anything to students who have never worked in an office?
Probably not. Unlike the employee example, all of our students
have played some kind of game and they often have very strong
opinions about games. Games cut across cultural, racial, and
gender boundaries.

Games may be entertaining like an arcade game or serious like a
biological simulation. All students at one point have played a
game. The important concepts of win conditions and scoring
systems are things that students are familiar with and thus little
background is needed when using simple games in a CS1 course.

Several examples of courses with games in their CS1 content exist
and academics are considering the use of games more often in
their courses [5]. Some of the courses are not truly games-related,
but are really visually oriented programming environments that
may be used for games [1, 2, 3, 4]. Some of these courses
explicitly teach game development and may not meet traditional
CS1 outcomes [6, 7]. Some courses use games for homework
assignments and projects. In order to avoid the common split
between the content of lectures and labs, we chose to integrate
game material into both our labs and the lectures while still
meeting traditional CS1 outcomes using Java as an introductory
programming language [13].

500

2. THE RAPT SUMMER COURSE
The CS1 course is part of a 3 course programming sequence titled
the Reality and Programming Together (RAPT) program. The
sequence teaches basic programming, algorithms, and data
structures with games as an application area.

2.1 RAPT CS1 – THE COURSE
Due to the pilot nature of the CS1 course, it was taught as a 10-
week summer distance course using Java. The course’s weekly
structure consisted of 2 hours of on-line lecture coupled with 2
hours of required lab/homework that were started synchronously
at a specific time. Students were expected to do much of the labs
and to read the book off-line. Teaching assistants were available
to help students with problems on-line. Three on-line quizzes and
a final were given to provide feedback to students and the
instructor. The final was then followed up by a placement exam
upon student arrival in the fall. The placement exam was used as a
pass/fail mechanism to allow students to progress into CS2. In
order to keep the course linked with real industry practices, two
game developers presented their work in on-line chat sessions
over the summer.

All incoming CS students who wanted to participate had to fill out
an application containing an essay of why they wanted to
participate as well as questions about prior programming
experiences. Applicants were chosen by considering beginning
programmers with good essays before those with more experience.
Roughly half of the students accepted were classified as beginning
programmers. So that all of our entering freshmen could
participate, the program was free during the summer, but carried
no course credit. The only material benefits to students for
participating in this program were that students could gain the
knowledge to take the placement exam upon entering our
university in the fall. This exam could place them out of CS1 and
into the RAPT CS2 course. Placement into CS2 frees up one
course slot in our degree program and allows students to take an
extra CS elective to fill that slot. All students accepted into the
program were slated to take CS1 in the fall. The course ran from
mid-June through mid-August.

2.2 RAPT CS1 – COURSE RESULTS
Games are very appealing to incoming students. Incoming
freshmen offered to take time out of their busy summer schedules
ranging from full time employment to family trips in order to take
an introductory programming course with a teacher they knew
nothing about.

We received 81 applications (40% of our entering class) and were
able to accept 48 into the program. Of these individuals, two were
female and five (non-overlapping) individuals were ethnic
minorities (out of a possible 25). The percentage of female
applicants is not really as small as it appears since there was an
entire pool of 9 females who received the RAPT program
application. These students generally entered the program for one
of two reasons:

1. They liked games and wanted to learn how to program
them.

2. They wanted to get ahead in programming and take CS2
upon arrival at our university.

The distance format introduced difficulties to the course. Of the
initial number, 4 never really attended the course, 3 withdrew
because of work schedules that conflicted with the course, 1
withdrew due to hospitalization, and 3 withdrew after going on
vacation and missing a few weeks of the course. Thus, by the end
of the course there were 37 people who qualified to take the
placement exam.

Success of the program was measured in two ways. First, scores
on the placement exam objectively measured student performance.
Additionally, students’ opinions were measured over the summer
with two surveys.

The placement exam contained a representative sample of CS1
materials and could be considered equivalent to a CS1 final,
although it also contained CS2 and CS3 materials as well. The
CS1 materials had a separate grade from the rest of the exam. The
placement exam was written by a professor not associated with the
RAPT program and tested CS1 and CS2 materials. It was used to
place students into our introductory sequence at the CS1, CS2 or
Advanced Placement level.

Of the 37 students, 3 failed the placement exam and were not
placed into CS2. If we consider only those students who attended
the course and took the placement exam, the overall failure rate
was approximately 8%. This is on the low range for our normal
CS1 courses (usually around 10%), although it is not significantly
different.

Of the students who passed the exam, two have left the program.
One has chosen to advance place out of CS2 as he passed the
exam at a level above CS2 and one has decided not to continue
with the program as his goal was to place into a regular CS2
course. This particular student stated that he is not particularly
fond of programming games. Three other students could have
placed into the advanced placement course and out of RAPT CS2,
but have chosen to stay in the program as they say that it matches
their interests more than the advanced placement course.

We tracked the subjective experiences of students with two
surveys taken at different times in the course. The surveys asked
students questions about distance learning, continuation of the
RAPT program, their comfort levels with a variety of
programming topics, their intimidation levels, and we asked some
free form questions about their likes and dislikes about the course.

We asked about intimidation that students felt from other
students. In a previous internal study of CS1 students, we found
that a significant portion were intimidated by other students who
“knew so much more”, and that the intimidated students were
more likely to switch majors. This is similar to the results found
by Bergin and Reilly who found a strong correlation between
student comfort levels with programming modules and their actual
performance [8]. Thus, a measure of the intimidation students

501

were feeling was very important. We used a Likert scale to
measure intimidation with 1 being always intimidated, 2
frequently, 3 sometimes, 4 very little, and 5 never intimidated.
The results between the original survey and the RAPT survey are
shown in Table 1. Only the top 3 intimidation levels are shown in
order to highlight the difference between the RAPT students and
our normal CS1 students. These differences could be due to the
distance nature of the course or to the fact that even when the
students did not know about programming, they were on equal
footing with their classmates in knowledge of popular games. Of
note is the fact that the one person (1 person on both surveys was
frequently intimidated) who feels intimidated is not one of the
poor performers in the class and passed the placement exam with
no problems.

Table 1: Student perception of intimidation due to their peers.
While the numbers are significantly smaller due to the size of

the RAPT course, intimidation percentages look different from
a normal CS1 course.

 Always Frequently Sometimes
CS1 (n=369) 7% 15% 23%
RAPT Survey
Week 4 (n=33)

0% 3% 30%

RAPT Survey
Week 10 (n=21)

0% 5% 19%

Of all students, approximately half agreed that the distance nature
of the course hurt their learning from the course, but 100% on the
last survey felt that the course should be continued with 66%
preferring the distance nature of the course to 34% who preferred
that the course be taught in the fall as a regular CS1 course. The
main reason for this preference appears to be the ability to get to
know other students with similar interests before coming to
college.

Over the summer, these students developed a cohesive bond that
has passed into the fall. Several students commented on their
disappointment at not being placed with a RAPT student as a
roommate in the dorms. In a free form question asking what
people liked about the course, approximately 30% cited meeting
other people as their top reason for liking the course. There is a
large body of research supporting the idea students in a cohesive
social group are more likely to succeed. The implication for using
games as an application area in CS1 is that the course may attract
those with similar interests outside of Computer Science. This in
turn can foster greater success.

Another 30% cited the games nature of the course as the part of
the program they liked the most. The students on the whole were a
very motivated group and commonly did more than they were
asked to on any given assignment. This ranged from creating extra
character classes for a combat simulation assignment to a student
who implemented the A* algorithm for character movement in a
2D collector game called PondMaze.

These results indicate the success of the program, although they
also suggest that providing a summer distance course to incoming
freshmen can be problematic. It is possible for a program such as
this to be used as an attractor for students who may be bored over
the summer and “looking for something to do”. The results
indicate that not all of our introductory courses should be taught
with games as an application area – some people do not like
games. We are a large enough school to offer this as a specialty
section of CS1, but smaller institutions (with only one small CS1
section) may have problems teaching CS1 courses in this manner.

3. SUGGESTIONS FOR COMBINING
GAMES WITH CS1
It is common to see many game-type projects/labs in a CS1-type
course. It is perhaps not quite as easy to link lecture materials to
the discussion of how games are developed. We would like to
offer some ideas for things that can be done within the context of
CS1 material. The visual nature of games is convenient for
instructors, as it is fairly easy to see how a particular syntactical
construct may be used in a game and logical program errors may
show up as amusing visual errors. As a simple example, students
were very amused when their grid-based game characters started
randomly jumping through walls due to incorrect programming of
the character movement routine.

Below we outline some of the basic topic areas that are covered in
a CS1 course and examples that we have or would like to use. We
realize that some of them may be straight forward, but expect that
some of them may be surprising to educators not involved with
the game development industry.

3.1 SOFTWARE ENGINEERING
The top games are usually multi-million dollar software
development projects with all the joys and pains of any other large
software project. On top of this, game developers often operate
under very harsh ship deadlines since most games must be
released before Christmas in order to generate appropriate
revenues. Game developers may go into “crunch time” shortly
before the game is to be released and sometimes use agile
development techniques such as pair programming in order to
limit the number of bugs introduced into the end product during
crunch time. At a recent Game Developer’s Conference, Agile
development was the main topic for a developer’s roundtable
discussion [9]. Postmortems for games are commonly published
in trade magazines for developers. In addition, modern games
focus much of their development efforts on extensive tool sets that
support the creation of content for the game including music, art,
and level design. Within a course doing a simple game such as
Tetris, this takes the form of programming a data driven design
where rather than students programming the movements of
individual blocks, they instead read in a configuration file
containing block layouts and rotation points. The blocks are then
properly displayed and rotated by generic methods. In looking at a
chronology of computer game development, further insights may
be obtained about how software engineering has developed in the
gaming industry from early assembly games through the
development of the modern game engine and the use of data
driven design [14].

502

3.2 ETHICS
Ethical issues are involved when certain game companies force
their employees to remain in crunch time (sometimes working as
many as 80 hours a week) when not close to ship dates. This has
led the International Game Developers Association (IGDA) to
issue a white paper that calls for a greater quality of life for game
developers [10]. The IGDA has white papers on a variety of legal
issues involving games [11] including the open question of
whether or not massively multiplayer games are addictive in a
similar manner to gambling and what developers can do for those
who play games too often. Other issues are involved when
individuals hack multiplayer games in order to gain unfair
advantages over opponents and occasionally source code is stolen
and distributed on-line as was done with the Half Life II engine.

3.3 PROGRAMMING
One of the primary focuses in a CS1 course is to teach
programming. At a higher level, we would like students to learn
how to create/use algorithms and then implement them using the
syntax of a particular programming language. Here we present a
sampling of ideas from games that can be used within the context
of a CS1 course.

1. Expressions: Role-playing games and collectible card
games often involve complicated combat systems. They
range from simply rolling one 10-sided die to determine
damage to a player character to full blown combat
systems that take character level, strength, agility, etc.
into account. One of our favorite examples comes from
a commercial role-playing game where low level
(numerically) characters become more and more likely
to miss hitting higher level characters as the level
difference increases. This game has the concept of
specialty skills for each character that can increase the
chance any character has to hit. One can think of a
couple of scenarios that would take this into account:

a. (ChanceToHit*levelRatio)+skillIncrease
b. (ChanceToHit+SkillIncrease)*levelRatio

The game in question uses a. and this means that low
level characters that choose to train in a specialty skill
have a much higher chance to hit higher level characters
than many players think they should. Expressions were
practiced in the course through a programming a portion
of a combat simulator called PondCombat.
Additionally, since students copied class templates in
order to fill in expression details, this lab could later be
used as a refactoring assignment in order to make the
code use inheritance properly.

2. Modulus: One can use the modulus operator wherever
there is a repeated sequence that should repeat every n
game clock ticks. Our favorite example has to do with a
line of identical horses that all swish their tails in a
metronome fashion at the same time from the
commercial game Rome Total War. Modulus can be
used to individualize when the horses swish their tails
by giving each horse a unique id that can be used to
start a tail swish at a multiple of that unique id in game

time. Prime numbers are better if horses should swish
their tails fairly independently, since the tails will align
at the least common multiples of two different horse
id’s.

3. Conditionals: Game logic in many games consists of
hierarchies of finite state machines. This is because state
machines are easy to create and easy to test. Interactive
fiction is a good example of a game concept that almost
entirely relies on large numbers of conditional
statements. Students can usually think of many ways the
logic of a finite state machine can break. We recorded a
sample from the game Morrowind where the player is
supposed to escort a husband back to his wife. If the
player stabs the wife, the wife will attack the player. The
husband (as a friend of the player) will then attack the
wife until one of them dies. Strangely enough, we
recorded a clip of this and when the two first meet each
other, the player completes the mission even though the
two them attack each other.

4. Iteration: A game loop keeps the game running in a
cycle waiting for user input until the user wants to quit
the game.

5. Arrays: To serve as a motivational vehicle for
introducing Arrays in Java, the class looked over an
essay from John Carmack of ID Software[12]. He wrote
an article regarding his experiences with cell phone
game programming. In the article he talked about the
many hurdles he encountered when dealing with an
interpreted language for game development. He talked
about how a useful language feature like range checking
with arrays actually caused a huge hit on the
performance of his code. Most students in the class were
already aware of who Carmack was and could
immediately associate with what he was talking about.
This in turn motivated students when they worked with
our 2D grid-based game called PondWars. We also
moved from programming with arrays for laying out
maps in PondWars to using a data file and a map editor
for construction maps. Other than map data, games with
multiple players and/or opponents work well for arrays
and can motivate the use of other linear data structures.

6. Objects, classes, and inheritance: Game characters are
often inherited from an entity class that includes all
kinds of character and game world objects. The
character class may derive from this class and different
types of characters further derive from the character
class. It’s often convenient to allow students to write
their own individual 2D opponent characters within the
constraints of a game. We had students rewrite
PondCombat in order to use inheritance properly (there
had been almost complete copying in the expressions
lab).

7. Efficiency: Many games need to distribute the load
caused by multiple characters within a small distance
from each other that are all trying to move and perform
other functions. Given the shear size of many modern
games, there are a lot of trade-offs in size and memory
and game developers are very careful with how they use
data structures. A favorite example of how a built-in

503

data structure can be misused can be shown for the Java
Vector class. The Java implementation for this
particular class allows for the resizing of the underlying
array structure when the number of data elements
exceeds the size that the array can hold. Unfortunately,
the automatic size increment is to multiply the current
size by 2 and the array starts out to be fairly small such
that it must grow quite often for large collections of
objects. It is very important for a person using the
Vector class to give it a default size and increment in
order to avoid having to recreate the array many times
as the data collection grows in size.

4. DISCUSSION AND FUTURE WORK
This course has shown that a large percentage of students like
learning about introductory programming concepts within the
context of computer games. While the program started off with
one of the hardest course formats to succeed in, almost all of our
students who persevered did succeed in the course. Those who did
not succeed gained an important benefit: many of them still
socially network with students in the RAPT program. We will be
tracking the overall success of all individuals from the original
group over the course of the first year in order to ascertain if there
is a lasting effect of the program on the students who actually
participated in the program at some point. At the time of writing
this paper, RAPT CS2 has started and is being taught in the studio
course model. Students are currently learning the C# language and
are discussing the pro’s and con’s of that language in comparison
to Java. We believe that using multiple languages early in CS
curriculum will prove beneficial. While CS1 concentrated on
small programming projects, CS2 contains a quarter long project
that requires individual students to write a client side (ro)bot to
play against other bots in the commercial game Unreal
Tournament. This project involves writing a message parsing class
that supports the client message interace, a multi-threaded TCP
client connection class, and artificial intelligence for how the bot
plays.

5. ACKNOWLEDGMENTS
This program was supported by a Microsoft Computer Gaming
Curriculum grant.

6. REFERENCES
[1] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R., Karel++: A

gentle introduction to the art of object-oriented
programming, John Wiley & Sons, 1997.

[2] Clements, D. H. and Meredith, J. S., Research on Logo:
Effects and Efficacy, Retrieved September 1, 2005 from

http://el.media.mit.edu/logo-
foundation/pubs/papers/research_logo.html.

[3] Cooper, S., Dann, W., and Pausch, R., Teaching Objects-first
in Introductory Computer Science, SIGCSE Technical Symp.
On Computer Science Education, 2003.

[4] Carlisle, M. C., Wilson, T. A., Humphries, J. W., and
Hadfield, S. M., RAPTOR: A Visual Programming
Environment for Teaching Algorithmic Problem Solving,
Proc. of the 36th SIGCSE technical symposium on Computer
science education (Feb. 2005), 176-180.

[5] Sweedy, E., deLaet, M., Slattery, M. C., and Kuffner, J.,
Computer game and CS education: why and how, Proc. of
the 36th SIGCSE technical symposium on Computer science
education (Feb. 2005), 256-257.

[6] Coleman, R., Krembs, M., Labouseur, A., and Weir, J.,
Game design & programming concentration within the
computer science curriculum, Proc. of the 36th SIGCSE
technical symposium on Computer science education (Feb.
2005), 545-550.

[7] Parberry, I., Roden, T, and Kazemzadeh, M. B.., Experience
with an industry-driven capstone course on game
programming, Proc. of the 36th SIGCSE technical
symposium on Computer science education (Feb. 2005), 91-
95.

[8] Bergin, S. and Reilly, R., Programming factors that
influence success, Proc. of the 36th SIGCSE technical
symposium on Computer science education (Feb. 2005),
411-415.

[9] Game Developer’s Conference Archives. Retrieved
September 1, 2005 from http://www.gdconf.com/archives/.

[10] Quality of Life Committee, Quality of Life in the Game
Industry: Challenges and Best Practices, Retrieved
September 1, 2005 from
http://www.igda.org/qol/whitepaper.php

[11] International Game Developers Association web site.
http://www.igda.org.

[12] Carmack, J., Cell Phone Adventures, Retrieved September 1,
2005 from
http://www.armadilloaerospace.com/n.x/johnc/Recent%20Up
dates.

[13] Bayliss, J., RAPT CS1 Course Home Page, Retrieved
November 1, 2005 from http://www.cs.rit.edu/~cs1.

[14] Dalmau, D. S., Core Techniques and Algorithms in Game
Programming, New Riders Publishing, 2004, 1-27.

504

