
Reviewed Papers

inroads – The SIGCSE Bulletin 103 Volume 37, Number 2, 2005 June

Why the High Attrition Rate for Computer Science Students:
Some Thoughts and Observations

Theresa Beaubouef
John Mason

Department of Computer Science
Southeastern Louisiana University

Hammond, Louisiana 70402
{tbeaubouef, jmason}@selu.edu

Abstract
This paper investigates the possible causes for high attrition rates for Computer Science students. It
is a serious problem in universities that must be addressed if the need for technologically competent
professionals is to be met.

Keywords: attrition, retention, computer science education

1. Introduction
At our university, there are over four hundred declared
majors in Computer Science. Each semester, however, only
about fifteen to twenty students graduate in this field. The
freshman courses comprise overflowing multiple sections,
but the upper level courses make two sections at most,
usually one, and the numbers are such that many elective
offerings are not possible. During advising and pre-
registration, it often seems that the advisors sign as many
change-of-major forms as they do schedule approvals for
registration.

What happens between the time that a student decides
to major in computer science and the time he or she drops
out of the program? There are many reasons why students
drop, resign, or transfer to other universities. After all,
every major suffers attrition from these causes. They may
be based on personal relationships, illness, financial
hardship, military service, or outside employment.
Additional factors affect computer science retention,
however, and several of these are discussed in following
sections.

It should be noted that most of the attrition happens
during (or between) the freshman and sophomore years.
Drop rates as high as 30 to 40% are reported by many
institutions, and are rapidly becoming the norm for
computer science programs. Therefore, much of the
following discussion is related to CS1/CS2 issues.

2. Poor Advising Before and During College
When asked why students choose to major in computer
science, a variety of not necessarily good reasons are

revealed. Sometimes students are directed into computer
science because high school guidance counselors, parents,
and the students themselves often have a less than perfect
idea about the students’ aptitudes. They feel that
“everything is going to computers” so students “can’t go
wrong by majoring in computer science. Many times these
same students were not advised to take more than the
minimum required math, language, and science courses,
and therefore, are less than prepared to begin college in this
major.

Students often have misconceptions about the field of
computer science. Many of them take a computer literacy
course, do well in it, and believe that computer science is
all about using word processors, spreadsheets, or web
browsers. Because they do well, they are encouraged to
take additional computer courses. Many other students like
to play video games, so their dreams are to become video
game programmers. They more often than not do not
realize the mathematics and computer skills necessary for
such endeavors.

Advising during college also plays a significant part in
the student’s ability to succeed. One of the authors taught a
section of Computer Architecture in which one of the
students had never taken a computer science course! His
advisor had placed him in the course “because he needed a
300 level architecture course.” Other students at a
university where the authors worked previously were often
advised to take a computer language in place of a foreign
language because CS1 and CS2 could substitute for a
foreign language, and learning a foreign language is

Reviewed Papers

inroads – The SIGCSE Bulletin 104 Volume 37, Number 2, 2005 June

difficult. Many were unpleasantly surprised to discover that
CS1proved to be even more difficult.

3. Poor Math Skills and Problem Solving Abilities
Mathematics is an integral part of computer science and
because of this, students must develop a good
understanding of mathematics in order to be successful in
computer science. It was shown in [1] how mathematics
relates to a typical curriculum in computer science and in
the professional area. Students who are adept at math tend
to perform better in computer science. They are better able
to understand relationships in data, scientific computations,
and algorithm design. This allows them to be better at
solving problems and generating good designs from
requirements.

The ability to solve problems is often very weak in
computer science students, and Beaubouef, et. al. [3] have
investigated ways to improve problem solving skills in
beginning computer science students. It most often
manifests itself as the inability to solve basic word
problems. While the ability to solve a word problem is a
math skill, word problems play a vital role in most CS1
courses. The authors have found that students that might
do very well on multiple choice tests may not perform
nearly as well on tests that present a simple real world
problem and ask the students to develop a basic C++ (or
Java) program.

Careful retesting revealed that syntactical knowledge
was not the problem. Students who did well on multiple
choice tests could successfully “hand trace” syntactically
correct code, spot syntax errors in incorrect code, and
successfully implement a detailed algorithm given in
simple English. The difficulty was the inability to form the
algorithm in the first place.
Naturally, the ability to formulate a procedural algorithm
(object oriented approaches are covered below) is
independent of syntax; indeed, it is independent of the
language chosen at the CS1 level. This is a skill that can be
taught. It is alarming to realize that many entering
computer science students do not have this skill at even a
rudimentary level. The first one to three weeks of our CS1
courses are spent teaching basic problem solving.

This is a painful “Catch-22” situation. Donald Knuth
has said that “CS = problem solving”. Much of what we do
is teaching students to teach a computer to solve a problem.
Nonetheless, rudimentary problem solving is a prerequisite
for CS1, therefore teaching it is outside the scope of the
course. Nevertheless, failing to teach these skills will
definitely result in more students dropping from the course,
therefore exacerbating the problem of high drop rates. The
authors suspect that requiring students to take a course in
elementary problem solving and natural language algorithm
design would result in better CS1 grades and higher
retention rates in the first two years of the computer science
curriculum.

4. Poorly Designed CS1 Lab Courses
Few people would argue that laboratory courses are an
essential part of CS1 / CS2 courses. Denning, et.al. [5]
espouse the view that “Computing sits at the crossroads
among the central processes of applied mathematics,
science, and engineering. The three processes are of equal
- and fundamental - importance in the discipline, which is a
unique blend of interaction among theory, abstraction, and
design.”

Given the critical importance of lab courses for the
beginning programmer, many universities do a poor job
developing labs. Walker [8] notes that, for many
universities, CS1 lab periods are “used for student
homework assignment completion.” This may seem
reasonable at first glance, especially since beginning
programmers need all the practice they can get.
Nonetheless, this approach is often detrimental. Walker
further notes that “homework-centric labs tend to
degenerate to teacher-assisted debugging sessions that are
frustrating to the students and teachers. These debugging
sessions do not develop programming skills and are not
conducive to close teacher-student interaction.” It is
possible that one student can “consume the teacher’s
attention for the majority of a lab period.” Meanwhile,
other students are forced to wait for their turn to speak to
the teacher or lab assistant. The natural conclusion is that
“programming skills are not developed in these debugging
sessions. Program planning and logic take a backseat to
code-compile-debug cycles.” Walker provides several
excellent suggestions for improving current CS1 labs.

5. Lack of Practice / Feedback
Almost every academician would agree that practice really
does make perfect, yet in a typical seventeen-week
semester, it is rare for an introductory course to include
more than twelve to fifteen programming assignments.
There are a variety of reasons for this, the predominant one
being that CS1 courses typically have very large sections.
Grading a large number of programs requires a large
amount of time, or an automated grading system.

While many instructors prefer automated grading
systems, some instructors (including the authors) are
philosophically opposed to them. Students have a right to
have a knowledgeable programmer look at their code and
provide meaningful feedback. Automated systems can’t
provide this kind of feedback. Moreover, it cannot provide
the beneficial feedback to the instructor so that he/she gains
understanding of those areas in which students may need
additional practice or instruction.

By the same token, many instructors would give more
tests and “pop quizzes” if doing so did not require a
substantial time investment. While many tests and quizzes
can be made multiple choice, other types require time
intensive “hand grading”. As class sizes increase to save
university dollars, the amount of time taken per student for
grading must, by necessity, decrease. This is less of a

Reviewed Papers

inroads – The SIGCSE Bulletin 105 Volume 37, Number 2, 2005 June

problem at larger institutions that have graduate students
available to faculty, since graduate students are generally
more than qualified to grade CS1 / CS2 programs and
quizzes, even if they are not yet ready to teach them.

6. Graduate Student Teachers
Many universities have absolutely no compunction about
allowing graduate students to teach low level CS courses.
In fact, many graduate students are capable of teaching
CS1 / CS2 courses, but many graduate students are thrown
into a large section of introductory programming courses
with little or no training. While every graduate student in
computer science should possess the technical knowledge
to teach the course, he may be completely unprepared to
speak in front of a classroom, especially if he suffers from
shyness or struggles with the English language. Spoken
and written language is important for everyone, and
mastery of language is essential for all in the computer
science profession [2]. If the person instructing the class
has language problems, then the quality of instruction is
compromised, and students are missing out on essential
learning opportunities. Furthermore, many undergraduates
do not show graduate students the same respect they would
show an instructor or a professor. Few would argue that
being an effective teacher requires more than mastery of
the subject matter.

Large universities are especially guilty of this shabby
treatment of students and graduate students. One of the
authors was a second semester junior (i.e. 6 semesters into
the computer science degree) before having a professor in
the classroom. Every CS course below the 4000 level was
taught by a graduate student. This can sometimes send a
message to students that they are not important, which
when added to the stress of a demanding major may be too
much for some to endure.

7. Poor Project Management Skills
Most students who leave computer science programs do so
in the first or second year. These younger students have
often not developed adequate study habits. However, even
those students having good study habits often lack some
important project management skills, which are necessary
to get programming assignments completed in a timely
manner.

A major problem students (and quite a few
professionals) have is in estimating the time required to
successfully develop a piece of software. This time
minimally includes the processes of analysis, design,
coding, testing, and documentation. Software projects
developed by professionals are notoriously behind schedule
in the real world [9]. It should come as no surprise that
software developed (programs written) by students will
tend to be even more behind schedule.

Unsuccessful students often want to skip analysis and
design and begin typing in code immediately.
Documentation is an afterthought at best, and little or no

testing is performed. Because the student planned to attack
the assignment in this manner from the beginning, he will
often wait until the last minute to begin and work until its
done or time runs out. These students set themselves up for
frustration, unnecessary rework, and failure.

Better prepared students, although still not good judges
of time and effort involved, begin projects earlier and
usually complete them on time. These students, however,
may still feel overwhelmed and frustrated when projects
are not completed as quickly as they had anticipated due to
poor understanding of the requirements or poor design.

In addition to having good time management skills,
computer science students must also learn to effectively
manage resources. They must have the required CDs, disks,
folders, etc. on hand when they are needed. They should
back up important work to avoid loss of effort.
Additionally, students who require computers in the lab
must be able to schedule their work when the computers
are available and the lab has minimal distractions. Those
students who work from home have additional equipment
management responsibilities. Whether in the lab or at
home, computers break, networks go down, and power and
telephone outages occur. Students must develop skills to
best manage their time and resources in less than perfect
working environments.

It often takes several semesters of programming and
dealing with real world issues before students attain the
necessary judgment to be able to manage time and
resources wisely. Compared to coursework in other
disciplines, computer science can seem very demanding,
time consuming, and frustrating. Students that aren’t
completely dedicated will often become discouraged and
switch to less demanding majors.

8. Choice of Language and Objects Early vs.
Objects Late
On the surface, this may seem like a ridiculous
consideration, since whether we teach objects early (before
traditional procedural programming) or later (after
procedural programming) is surely merely a matter of
personal choice. Nonetheless, there is increasing evidence
that where (and how) we teach objects is a matter of great
importance. McConnell and Burhans [7] studied
introductory CS textbooks over a three decade period.
They noted that older textbooks (on procedural
programming languages) averaged under 500 pages. For
example, the average Fortran text was 379 pages. More
modern textbooks are considerably larger, with the average
Java text weighing in at a whopping 866 pages.

Perhaps more alarmingly newer textbooks contain less
coverage (on average) on simple data types, arithmetic
expressions, relational and logic expressions, repetition
statements, subprograms, and arrays. McConnell and
Burhans conclude that they “can see a disturbing trend in
the coverage of both basic programming constructs and
subprograms. There has been about a 40% decrease in the

Reviewed Papers

inroads – The SIGCSE Bulletin 106 Volume 37, Number 2, 2005 June

coverage of basic programming constructs and a 62%
decrease in the coverage of subprogram issues. At the
same time, there has been a close to 300% increase in
input/output issues, due solely to the inclusion of GUI
issues. An increase this large must surely have an impact
on what can reasonably be taught in a CS1 course.”

Further evidence that many professors are concerned
about whether objects should be taught early or late (or
even at all) in a CS1 course came in the form of a series of
exchanges on the SIGCSE mailing list in March of 2004.
The discussion was so intense that Bruce [4] wrote an
article that summarizes much of the academic debate.
Much of the discussion began when Elliot Koffman posted
a message stating that many faculty refuse to adopt
methods that emphasize teaching objects very early in
introductory courses. Koffman compares teaching Java to
the “new math” experiment of the 1960s. He opined that
the major cause of this refusal is simply that many faculty
do not posses the proper background to teach object-
oriented programming. Thus they fall back on what they
do know, and teach procedurally. On the other hand, he
notes that “weaker” CS1 students struggle to master the
additional layers of abstraction that result from using
objects and GUIs, but states that “good” students have no
difficulty with the objects first approach.

Stuart Reges made a post entitled “The new CS” that
picked up on Koffman’s “new math” analogy. Reges
wonders when the “the discussion … switched away from
WHETHER to teach objects early … to the question of
HOW to teach objects early.” He challenged proponents of
the objects early camp to demonstrate that:

1. A broad range of teachers can teach objects early well.
2. A broad range of students can master it, and
3. The object early approach solves more problems than it

creates.

As might be expected, this post led to considerable
debate among CS1 teachers. Many teachers are convinced
that teaching objects early poses more problems than it
solves. While Bruce himself is in the objects early camp,
even he notes that “the one thing that there was near
universal agreement on during the discussion is that it is a
challenge to teach objects early.” Clearly this is a highly
controversial topic that isn’t likely to go away soon.

9. Conclusion
In this paper we discuss the very real problem of attrition in
computer science programs. There are several reasons for
poor retention of students. We discussed many of the areas
that we consider relevant to all university computer science
programs. It should be noted however, that other factors
such as the transferring of students to other nearby
universities, poor high schools, unpopular faculty members,
administrative reorganizations, etc., may also be significant
factors for some institutions.

While we address some important issues for computer
science retention in this paper, we do not discuss solutions
to these problems here. It is hoped that by identifying some
of the major reasons for high attrition rates among students,
these areas can be further studied, and efforts can be made
to reduce the high attrition rates.

References
[1] Beaubouef, T., “Why Computer Science Students Need Math,” SIGCSE Bulletin (inroads), vol. 34 No. 4, December 2002.
[2] Beaubouef, T., “Why Computer Science Students Need Language,” SIGCSE Bulletin (inroads), Vol. 35, No. 4, December, 2003.
[3] Beaubouef, T., R. Lucas, and J. Howatt, "The Unlock System: Enhancing Problem Solving Skills in CS1 Students," SIGCSE Bulletin

(inroads), vol. 33, no. 2, pp. 43-46, June, 2001.
[4] Bruce, K. “Controversy on How to Teach CS1: A Discussion on the SIGCSE-members Mailing List”. SIGCSE Bulletin (inroads),

Dec. 2004 (36:4). pp. 29-34.
[5] Denning, P. (ed) “Computing as a Discipline”. Communications of the ACM, Jan. 1989 (32:1). pp. 202-210.
[6] Kendall, K. and Kendall, J. Systems Analysis and Design, Prentice Hall, New Jersey, 1999.
[7] McConnell, J. and Burhans, D. “The Evolution of CS1 Textbooks. Proceedings of Frontiers in Education. 2002. pp. T4G-1-T4G-6
[8] Walker, G. “Experimentation in the Computer Programming Lab”. Inroads, Dec. 2004 (36:4). pp 69-72.
[9] Whitten, J. and Bentley, L. Systems Analysis and Design Methods, Irwin McGraw-Hill, Boston, 1998.

