
 

 

Wuʼs Castle: Teaching Arrays and Loops in a Game 
Michael Eagle 

University of North Carolina at Charlotte 
Computer Science Department 

9201 University City Blvd.  
1-704-687-8577 

maikuusa@gmail.com 

Tiffany Barnes 
University of North Carolina at Charlotte 

Computer Science Department 
9201 University City Blvd.  

1-704-687-8577 

tbarnes2@uncc.edu 
 

ABSTRACT 
We are developing games to teach introductory computer science 
concepts to increase student motivation and engagement in 
learning to program. Wu’s Castle is a two-dimensional role 
playing game that teaches loops and arrays in an interactive, 
visual way. In this game, the player interactively programs 
magical creatures to create armies of snowmen.  The game 
provides immediate feedback and helps students visualize the 
execution of their code in a safe environment.  We tested the 
game in a CS1 course, where students could earn extra credit to 
play Wu’s Castle. Our results show learning gains for game 
players, compared both through pre- and post-tests differences 
and improved performance on relevant final exam questions when 
compared to students who did not play the game. The results of 
this study suggest that Wu’s Castle implements good practices for 
teaching programming within a game. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - computer science education. 
K.8.0 [Personal Computing]: General - games. 

General Terms 
Human Factors 

Keywords 
CS1 education, Game2Learn, iteration, arrays, games 

1. INTRODUCTION 
Enrollments in computing have been declining at alarming rates 
since 2000, and the proportion of underrepresented groups is also 
decreasing [1].  Attrition rates in computing are as high as 30-
40%, with most students leaving after taking either CS1 or CS2 
[2]. Increasingly, researchers and educators are calling for 
improvements in computing education and have turned to games 
in order to motivate students through assignments, curricula, and 
undergraduate research [3-11].  On the other hand, the study of 
games has lacked a coherent research paradigm [12].  Although 
studies have defined the qualities of games that might also be 

leveraged to improve education (such as challenge, fantasy, and 
curiosity [12]), and researchers are beginning to investigate the 
importance of the social context and communities built around 
games in informal learning [13, 14], there is still a need for 
controlled studies that might reveal the relative importance of 
game characteristics in motivation and learning. In other words, 
we are interested in investigating whether simple games that teach 
computing might demonstrably motivate students to engage in 
learning outside of the classroom. 
The second author has established the Game2Learn research 
project, which engages advanced undergraduate computing 
students in building small games that teach individual CS1 
concepts, and testing these games in introductory computing 
classrooms.  This project has been successful in supporting 
undergraduate retention and recruiting into computing graduate 
programs [15], while also revealing some of the most important 
aspects of educational games through our user studies [16]. 

We target our games to novice computing students who are also 
novice game players. According to a survey of computing 
educators, loops and arrays are two of the top three programming 
topics reported to be difficult for novice students [17].  Testing 
and debugging were two items often mentioned on this survey as 
well [17]. Compiler errors can be confusing for beginning 
students, and code that compiles but produces incorrect results can 
be even more bewildering.  Beauboeuf cites both poorly planned 
labs where teachers debug student code, and lack of practice with 
meaningful feedback as causes for attrition in CS [2]. Both of 
these examples beg for educational systems that assist students in 
anticipating and finding errors, and providing students 
individualized feedback. 
We present Wu’s Castle, a game developed as a Game2Learn 
capstone project [16] at the University of North Carolina at 
Charlotte.  Wu’s Castle was developed to teach loops and arrays 
in an interactive, visual way.  In Wu’s Castle the player 
interactively constructs C++ code to solve in-game problems.  The 
player is able to watch how a program steps through their code 
and identify logic errors. We tested the game in a CS1 course 
where students could earn extra credit for playing Wu’s Castle and 
taking a pre- and post-test.  Questions similar to the pre- and post-
test were placed on course’s final exam.  Students who played the 
game achieved pre- to post-test learning gains and also 
outperformed other students in the class on the array section of the 
final exam. Our results suggest that Wu’s Castle implements good 
practices for teaching programming within a game. 

2. THE WU’S CASTLE GAME 
Wu’s Castle was developed in RPG Maker XP, a 2-dimensional 
role-playing game development program that allows developers to 
quickly build games through drag-and-drop map and event editing 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ITiCSE’08, June 30 - July 2, 2008, Madrid, Spain. 
Copyright 2008 ACM 978-1-60558-115-6/08/06…$5.00. 
 

245



 

 

and Ruby script programming. The game was developed using a 
rapid-prototyping and testing iteration cycle as described in [15]. 

Wu’s Castle contains two main types of interaction: one for 
manipulating arrays by changing For Loop parameters, the other 
for physically walking the game character through the execution 
of nested loops.  In the game, the player is first introduced to the 
story and the game interface. In Level 1, the player explores one-
dimensional array manipulation using for loops.  In Level 2, the 
player walks his or her character through a nested loop, and the 
player is asked multiple-choice questions about the loop’s code; 
such as, “Which variable controls the outer loop?” In Level 3, the 
player uses nested for loops to modify two-dimensional arrays. 

2.1 Array manipulation (Levels 1 & 3) 
In Levels 1 and 3 the player uses a magical creature called a 
machina to create armies of snowmen and escape a mirror 
universe.  To build the snowmen, the player must manipulate an 
array of values that describe the type of snowman at each position. 
The array is represented in the game as a line or grid of snowman 
characters. In each position, there might be no snowman, a regular 
snowman, a snowman with arms, a snowman with a hat, or a 
knocked-over snowman. 

Wu’s Castle provides the structure of a For Loop in C++ and 
allows the player to change the initial condition, stopping 
condition, and step size.  The player then chooses the body of the 
loop and watches the loop execute. The player’s code is a set of 
instructions telling the machina which array positions to visit 
(through loop parameters) and what snowman to place in each 
position (through the loop body).  As she executes her instructions 
the player watches how she changes the array. Her travel through 
the array visualizes how the parameters of the For Loop control 
her movement, and what positions in the array are visited.   Her 
animation placing a certain type of snowman at each position 
demonstrates the body of the For Loop.   
Figure 1 shows the for loop as the player has set its parameters: 
for(i=0; i<=19; i=i+1) array[i] = Snowman.  The player selected 
the start, end, and increment values, and the machina is halfway 
through creating a row of 20 snowmen. Figure 2 shows the player 
choosing the body of a nested loop to create 40 snowmen. 

 
Figure 1: The machina executing code in Level 1, showing half 

of the array updated during Mission 1 

In the underlying code, the student’s constructed For Loop is run 
to modify an array that controls the snowmen drawn at each 
position. This dynamic implementation allows the player to 
visualize the actual effects of changing loop parameters.  We 
carefully adjusted the timing of the animation so the machina 
would not travel too quickly; making the visualization more clear. 

 
Figure 2: Selecting the body of a nested loop in Level 3 

Table 1 shows Level 1 missions. The player must complete each 
mission in order to move on to the next, more challenging 
mission.  Level 3’s missions follow a similar progression through 
filling a whole 2-dimensional array, certain rows, certain columns, 
and finally combinations of subsections, rows and columns.  This 
progression was designed to demonstrate typical for loops and 
illustrate how changes in the parameters affect the loops. 

Table 1: Level 1 missions showing loop parameters 

Mission  Start  Stop  Step 
Edit the entire array (Figure 1)  0  19  1 
Edit even array positions  0  19  2 
Edit odd positions  1  19  2 
Edit a subsection of the array   3   17  1 
Edit every 3rd pos. in subsection  5  10  3 

 
2.2 Nested Loop Walk-through (Level 2) 
This part of the game offers the player a worked example.  The 
player is shown a typical C++ program that contains a nested loop 
with a cout statement.  The player can view the code at anytime 
by pressing a button and is sometimes asked questions about the 
sample code; such as “which variable represents the outer loop?” 

As shown in Figure 3, the map contains two circular paths, 
representing the two loops in the program.  The code statements 
are represented as chests (1-7) on the path.  When the player 
touches a chest, a part of the code will be executed. The values of 
the loop control variables are constantly displayed on the screen to 
show how the variables change during each step of the program. 

When the player walks around the large (outer) loop, they are 
directed into the smaller loop where they must circle several times 
before they are able to escape back to the outer loop.  

The student walks through the nested loop execution, starting at 
the top of the diagram. The player progresses downward and 

246



 

 

enters the outer loop. The game indicates which line of code is 
being executed each time the player touches a chest.  When the 
player enters the inner loop the path out is blocked until the player 
completes the inner loop the correct number of times.  The labels 
in Figure 3 show program statements as described below: 

1. Initializes the variables 
2. Prints “BEGIN” 
3. Enters the outer loop 
4. Prints the outer loops variable 
5. Enters the inner loop 
6. Prints the inner loops variable 
7. Prints “END” 

 

 
Figure 3: Nested Loop execution walk-through 

This level of the game was designed to help students visualize and 
interactively walk through the structure and execution of nested 
for loops.  Students begin to realize how inner loops start and how 
many times they iterate before closing, because their character is 
not allowed to exit the inner loop until it is complete. 

2.3 General Game Features 
In our previous studies, we found that prompt, obvious feedback 
positively affected student attitudes and performance in learning 
games [16]. Due to the importance of feedback, in Wu’s Castle, 
the player receives feedback after each attempt at an answer.  
When the solution is correct a large green circle is displayed 
accompanied by a positive sound. If the student’s code fails to 
compile the machina falls unconscious; this represents a syntax 
error. and the student must try again.  An incorrect solution results 
in a large red X and a negative sound, representing a logic error. If 
the code goes out of the array’s bounds, the machina explodes, 
representing a program crash.  After any failure, the array and 
machina are reset.  Should the player complete a mission in one or 
two tries, a bonus animation and sound are played.  The obvious 
feedback helps novice game players understand their progress.   

The player’s score is displayed as an “experience” meter in the 
bottom left of the screen.  The player is awarded with experience 
points for correct answers and completed missions.  Bonus points 
are awarded when a mission is completed in one or two tries.  
Incorrect answers can sometimes result in a subtraction of points; 
the amount varies depending on the severity of the incorrect 
response.  When the bar becomes full the player’s rank is 
increased, and an animation and sound is played.  This rank is 
used to motivate the players to perform well. 

Wu’s Castle records a time-stamped log for each game session.  
At the start of a game session, the player is asked to enter a user 
ID.  The log file is placed into the game directory when the game 
exits.  The log file is lightly encrypted to prevent tampering.  

3. ARRAY LEARNING STUDY 
Twenty-eight students in a CS1 class were offered extra credit for 
playing Wu’s Castle.  The students were asked to sign an 
informed consent form, take a pre-test, play the game, and then 
take a post-test and qualitative survey.   The course’s final exam 
was given later, including questions listed in Table 2, which were 
similar to those on the pre- and post-tests. 
Table 2: Array questions; the questions on the pre- and post- 

tests were similar, with some numbers changed. 
Q1  Given the following code:  

int Num[20];  
for ( int k = 0; k < kMax ; k++ )   
   Num[k] = k+1;   
for (k=kMax‐1;k >=0 ;k‐‐)  
      cout << Num[k] << endl; 
 
Which values of kMax will cause an out‐of‐bounds error 
 (Circle all that apply)? 
   9, 10, 11, 19, 20, 21, 10000, 
   No values will produce an out‐of‐bounds error,  
   There is no such thing as an out‐of‐bounds error 

Q2  int Num[7]={0,7,6,2,1,8,5};  
 
What are the values of the expressions below? 
Num[0], Num[5], Num[4], Num[2]+Num[3] 

Q3  Given the following code, draw the array Num with its values. 
  int x=7, Num[3][2]; 
  for ( int j = 0; j <= 2 ; j++ )   
      for ( int k = 0; k <= 1 ; k++ )  { 
         Num[j][k] = x;  
         x++; 
      } 

Q4  How many times will Line A be executed? 
  int Num[100]; 
  for ( int k = 0; k < 100; k++ )   
  { 
    Num[k] = 1;    // Line A 
    if ( k > 10 )  break; 
  }   

Q5  What are the values for each expression below? 
  9 8 7 6 5           Array[3][2] ? 
  4 3 2 1 0           Array[5][4] ? 
  1 2 3 4 5           Array[2][1]+Array[0][1] ? 
  6 7 8 9 0           Array[1][3] ? 
  5 5 5 5 5  

 

The pre- and post-tests and qualitative survey were administered 
through an online surveying tool (www.surveymonkey.com).  The 
game was made available online, and students were able to 
download and play it at home.  The students first took the pre-test 
and then played the game. After playing the game, the students 
were asked to email the log files to the first author, and take the 
online post-test and survey. There were no set requirements on 
how long to play the game, but we expected the game to take 
about 20-30 minutes. 

1 

2 

3 

4 

5 

6 

7 

247



 

 

4. RESULTS AND DISCUSSION 
Since the study was conducted as extra credit at the end of the 
semester, the level of participation varied across the class.  Of 27 
students in the class, 11 did not play Wu’s Castle, or take any pre- 
or post-tests; we call this group Control-NoPretest (cNP).  Seven 
students took the Array pre-test but did not play Wu’s Castle; this 
group is Control-Pretest (cP).  Nine students completed the pre-
test, played Wu’s Castle and turned in a log file, and completed 
the post-survey; this is group Game. Pre-, post- and exam 
questions were each worth one point. Students were able to earn 
partial credit on questions with multiple part-answers. 

4.1 Pretest to Posttest Learning Gains 
Table 3 shows the average scores on each question and overall for 
group Game on the pretest, posttest, and the corresponding final 
exam questions.  For the Game group, the average scores on the 
posttest were statistically significantly higher than the pretest 
(2.70 to 1.65) (p=.003).  Comparing the difference between an 
individual student’s posttest and pretest score reveals an average 
17% grade improvement.  Eight of the students in group Game 
improved their scores, while 1 student showed a slight decrease in 
scores between the pre- and post-tests. Students (N=4) who made 
it to the second level of the game performed significantly better 
on question 5 (p=.03) on the posttest.  The variance decreased 
from 1.73 to 0.49 between the pre and posttest. The average final 
exam scores were slightly higher than the similar questions on the 
posttest, indicating that the students retained knowledge. 

Table 3: Results for group Game (N=9) 

 Q1 Q2 Q3 Q4 Q5 Total % 

Pretest 0.40 0.48 0.10 0.30 0.38 1.65 33 

Posttest 0.51 0.75 0.67 0.33 0.44 2.70 54 

Final 0.81 0.85 0.25 0.40 0.48 2.79 55.8 

 

4.2 Pre-test to Final Exam Comparison 
Table 4 lists the pretest performance of the groups Game and cP. 
Overall, the average pretest scores for these two groups were not 
statistically significant (p=.35). For each student, we computed 
the difference between the final exam and pre-test score for each 
question, and the average of these differences over all students is 
shown in Table 5. We note that while group Game performed 
significantly better on the final exam array questions than on the 
pre-test, the difference in final and pre-test scores was not 
significant for group cP (p= .34). This shows that exposure to the 
pre-test questions did not have a significant effect on performance 
on the corresponding questions on the final exam for group cP.   
Table 4: Pretest scores for groups Game (N=9) and cP (N=7) 

 Q1 Q2 Q3 Q4 Q5 Tot. % 

Game  0.4 0.475 0.1 0.3 0.375 1.65 33 

cP  0.64 0.17 0.50 0.33 0.21 1.85 37 

 
Table 5: Average of (final-pretest) score differences 

 Q1 Q2 Q3 Q4 Q5 Total % 

Game 0.41 0.38 0.15 0.10 0.10 1.14 22.8 

cP 0.08 0.17 -0.33 -0.17 0.00 -0.25 -5 

Table 6 shows the performance on the final exam for the 
questions corresponding to the pre- and post-tests for each group. 
There was no significant difference between the control groups on 
the final exam questions (p=.37). Together with the pre-test to 
final exam comparison for group cP, these results provide 
evidence that there was no significant effect from multiple 
exposures to similar questions.   

Table 6: Final exam comparison between control groups 

 Q1 Q2 Q3 Q4 Q5 Tot. % 

cP 0.72 0.33 0.17 0.17 0.21 1.60 32 

cNP 0.47 0.36 0.18 0.09 0.27 1.38 27.6 

cP+cNP  0.59 0.35 0.17 0.13 0.24 1.49 29.8 

Game 0.81 0.85 0.25 0.40 0.48 2.79 55.8 

 

4.3 Final Exam Performance 
Table 7 shows the percent correct for the array portion, the non-
array portion, and the overall final exam for all three groups. The 
array portion of the exam consisted of the 5 pre- and posttest 
questions plus 2 additional questions.  Although all scores were 
higher for group Game, none of the score differences are 
significantly different, except for those on the array portion.  
Group cP’s scores were also higher than those for group cNP, 
though this difference is not significant. 

Performance on the array section of the final exam was almost 
equal between cP and cNP; however, cP scored about 5 points 
higher on the remaining portion of the final. The self-selected 
students (group Game and cP) performed 11% higher on the non-
array section of the final exam; while there was no statically 
significant difference found, the self-selected students may have 
been slightly better performers. 
Table 7: Final exam performance by section of the final exam  

 N Array Portion Non-Array Portion Total 

Game 9 54.63 78.35 77.16 

cP 7 37.43 75.98 71.37 

cNP 11 36.71 70.42 66.93 

Control 18 37.05 73.20 69.15 

 

When comparing Game and Control (cP+cNP), the average score 
for the array portion of the final exam was 51% higher for 
students who played Wu’s Castle (p=.01), suggesting that Wu’s 
Castle improved student learning about arrays.   

4.4 Qualitative Survey 
The qualitative survey consisted of eleven Likert-scale items as 
listed in Table 8.  The scale was a 5-point scale from Strongly 
Disagree to Strongly Agree.  There were also three open response 
questions that asked the student what part of the game they liked 
the best, and for suggestions or comments. Table 6 lists the 
number of students who selected “Agree” or “Strongly Agree” 
with the listed survey items. 
 
 

248



 

 

The majority of group Game enjoyed playing Wu’s Castle and 
would like to play more games like it.  The students also felt as 
though the game was serious enough for homework in a CS 
course. Students generally found the game to start out at a doable 
level, but did not find it too easy.  Most did not guess answers in 
the game; but were motivated to get the correct answers. 
Table 8: Percent agreement with survey items (9 participants) 

Survey Item  % agree 
I enjoyed playing Wu's Castle  67 
This was an easy game to play  44 
Sometimes I was unsure of what I was supposed 
to do in the game 

33 

At first the game was hard, but it was easy after I 
got the hang of it 

11 

I liked creating code in the game  67 
Overall, this game was helpful in learning 
computer science 

78 

Overall, the game had a good balance between 
"play" and "quest" time 

56 

I would like to play more quests like these  67 
I was motivated to try hard to answer questions 
correctly in the game 

78 

Sometimes I missed questions on purpose to see 
what would happen 

11 

I guessed at the answers for most of the 
questions 

11 

 
When asked what students liked best in the game, several students 
said they liked the simple interface.  The most common response 
was that after you made a mistake, you were given the chance to 
try again with one player saying “It gave me a chance to come up 
with the answer after I kept getting it wrong and even after I had 
gotten it right...I could still practice more.” 

In the recommendations for improvement almost all of the 
students desired a better hint system.  The game allows players to 
re-try a mission as many times as desired, but offers little in the 
way of helping the player, should they become stuck. 

5. CONCLUSION AND FUTURE WORK 
Our results showed that students who played Wu’s Castle 
achieved statistically significant learning gains when compared to 
students who did not play the game.  Although the sample size 
was small, the difference in scores was large. These results 
suggest that Wu’s Castle implements good practices for teaching 
programming within a game; these practices include frequent and 
obvious feedback and interactive visualization of code.  On 
average, students played the game for about 40 minutes, 
demonstrating that students appreciate many chances to try the 
same problems.  The results of this study should encourage 
instructors to consider implementing these technologies in 
classrooms. Future games can be developed with principles 
similar to Wu’s Castle for other concepts in computer science; and 
give players a place to practice programming and easily identify 
mistakes in a safe environment.  We plan to continue creating 
Game2Learn games and running studies to track learning and 
retention rates in introductory computer science courses. 

Wu’s Castle was Game2Learn’s first attempt at online delivery.  
Some of the players reported difficulty installing the game.  

Emailing the log files is troublesome; and we only know if 
students are playing when they email us a log file.  Future work 
should include an easier game installer, more concise install 
instructions, and a way for the logs to be automatically sent.  
Parsing the games log files for data was time consuming had to be 
performed manually.  A XML based log system has since been 
developed for future versions of the game.  Future work should 
also include more specialized feedback when the players 
repeatedly fail at the same task. 

6. References 
[1] Zweben, S. 2003-2004 Taulbee Survey. Computing Research 

Association Taulbee Survey, May 2005.  
[2] Beauboeuf, T & J. Mason. Why the high attrition rate for 

computer science students: some thoughts and observations. 
SIGCSE Bull. 37, 2 (Jun. 2005), 103-106. 

[3] Bayliss, J. The Effects of Games in CS1-3, Microsoft 
Academic Days Conference on Game Development in 
Computer Science Education, Feb. 2007, 59-63. 

[4] Bayliss, J. & S. Strout. Games as a "flavor" of CS1. In 
SIGCSE2006. ACM Press, New York, NY, 500-504. 

[5] Becker, K. Teaching with games: The Minesweeper and 
Asteroids experience. The Journal of Computing in Small 
Colleges Vol. 17, No. 2, 2001, 22-32. 

[6] Garris, Ahlers, & Driskell. Games, motivation, and learning: 
a research and practice model. Simulation & Gaming, Vol. 
33, No. 4, 2002, 441-467. 

[7] Gee, J. P. What video games have to teach us about learning 
and literacy. Comput. Entertain. 1, 1 (Oct. 2003), 20. 

[8] Gumhold, M. & Weber, M. Motivating CS students with 
game programming. Proc. Intl. Conf. on New Educational 
Environments (ICNEE), Neuchatel, Switzerland, Sep. 2004. 

[9] Parberry, I., Roden, T., & Kazemzadeh, M. Experience with 
an industry-driven capstone course on game programming: 
extended abstract. SIGCSE 2005: p91-95. 

[10] Prensky, M. Digital Game-Based Learning, New York, 
McGraw-Hill, 2001. 

[11] Wolz, U., T. Barnes, I. Parberry, and M. Wick. Digital 
gaming as a vehicle for learning. SIGCSE 2006: p. 394-395. 

[12] Squire, K. (2003). Video games in education. International 
Journal of Intelligent Simulations and Gaming, vol. 2, 49-62. 

[13] Hunicke, R., Robison, A., Squire, K., and Steinkuehler, C. 
Games, learning and literacy. Sandbox 2006. ACM Press, 
New York, NY, 19-19.  

[14] Steinkuehler, C. Learning in massively multiplayer online 
games. In Proc. Intl. Conf. Learning Sciences, Santa Monica, 
CA, June 22 - 26, 2004, p. 521-528. 

[15] Barnes, T. Powell, E. Chaffin, A. Godwin, A. Game2Learn: 
Building CS1 Learning Games for Retention. ITiCSE'07. 
ACM Press, New York, NY, 500-504. 

[16] Barnes, T., E. Powell, A. Chaffin, H. Lipford. Game2Learn: 
Improving the engagement and motivation of CS1 students. 
To appear in ACM GDCSE’08.  

[17] Dale, N. B. 2006. Most difficult topics in CS1: results of an 
online survey of educators. SIGCSE Bull. 38, 2 (Jun. 2006), 
49-53. 

249


