
Design and Implementation of Computer Games: A Capstone
Course for Undergraduate Computer Science Education

Randolph M. Jones
Computer Science Department

Colby College
5847 Mayflower Hill Drive
Waterville, ME 04901-8858

rjones@colby.edu

Abstract

This paper presents a course in the design and
implementation of computer games, offered as an upper-
division computer science course at Colby College during
the winter semester, 1999. The paper describes the
material, topics, and projects included in the course. More
generally, I argue that this course provides an ideal
environment for students to integrate a wide base of
computer knowledge and skills. The paper supports this
argument by presenting the variety of computer science
concepts covered in the course, as well as pointing out
potential areas of variation in future courses, depending on
the tastes and priorities of the instructor.

1 Background
Computer games are a hugely popular and successful
application o f computer technology. Many computer
games developed these days have production budgets that
rival Hollywood movie budgets. On top of this, computer
games make some o f the most extreme demands on
computer technology, requiring more speed, memory, and
state-of-the-art peripherals than most standard application
software. Because computer games push so many
envelopes at the same time, they create a ripe area for a
variety of research in computer science. More importantly
for this presentation, serious game-oriented projects expose
students to a wide variety of technology issues and
development and design skills.

In spite of this, before teaching the course presented here, I
was personally aware of only two computer game courses
at the college and university level. Professor John Laird
offers one course at the University of Michigan [8] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/99/0003... $5.00

Professor Ken Forbus offers the other at Northwestern
University [3]. I have since learned of two other computer
games courses taught by Jessica Hodgins and Amy
Bruckman at the Georgia Institute of Technology [4] and
Ian Parberry at the University of North Texas [13].

2 Motivation

I was attracted to the idea of a course on computer games
for a variety of reasons. On the surface, such a course
appears to offer at least the following advantages:

1 It provides an extremely project-oriented, upper-
division course to exercise and enhance the
programming and problem-solving skills of advanced
students.

2 There is presumably little effort required to motivate
the students, to the extent that students can reasonably
be expected to expend a fairly large amount of effort
on the course.

3 A final project in such a course requires the students to
go through a fairly complete software cycle from
initial design through implementation to testing and
demonstration before their peers.

4 The integration of concepts and techniques required to
design and build computer games covers many of the
topics offered in an undergraduate computer science
curriculum, allowing the students concrete application
of much of the theory, concepts, and skills they have
been exposed to.

5 Computer games provide excellent examples of object-
oriented environments, for which object-oriented
design and programming is ideal. This fits in
especially well at Colby College, where the lower-
division curriculum centers on object-oriented design
and programming using the Java programming
language.

6 The history and design of computer games include a
variety of interesting technological and sociological
stories, the study of which fit in well with the liberal
arts philosophy at Colby College.

The remainder of the paper presents the details of the
course I offered. In the final analysis, although there were

260

Computer game genres
Game design and implementation issues/evaluating

computer games
What makes a computer game "good"/'popular"?

History of video and computer games
General architecture of computer games

Event loops
State-based programming

Introduction to Animation
Frame rates; physiological and technical issues
Simulation frame rate vs. animation frame rate

Introduction to "sprites"
Object-oriented design and computer games
More on sprites and agents

Viewing sprites as objects in an object-oriented
world

Building game applets
Game manager object

Threads and multi-threaded programming
Threads in Java

More on animation; drawing and animation in Java
Video cards; technical details of drawing
Double buffering, blitting, clipping
Making animation efficient

A library of sprite-related classes in Java
Game input; input devices

Mouse and keyboard events in Java
Graphics and image processing in Java
Sound processing in Java
Using application software to develop sounds, images,

3-D graphics
Extending Java sprite class to have bitmapped sprites
Technical details of computer graphics and graphics

formats
Pixels, raster vs. vector graphics, anti-aliasing,
gamma correction, alpha channel, resolution,
color look-up table, dithering, compression

2-D graphics; rotation, translation, scaling, reflection
Using matrices to transform 2-D graphics

Using a 2-D graphics library
Animated bitmaps; bitmap loops/sequences

Extending the sprite class for animated bitmaps
Special effects using the alpha channel in Java
A framework for analyzing/categorizing game

interfaces
Presentation, world structure, world quantization,
projection type, projection angle, point of view

The art of computer game design
The craft of computer game design
Modeling physics; position, time, velocity,

acceleration, collisions, mass, force, momentum,
conservation of momentum, gravity, friction,
resistance

3-D graphics, objects, and worlds
Understanding and using a 3-D graphics library in
Java
The 3-D pipeline
Coordinate systems, projections, and
transformations (in 3D); model coordinate
system, world coordinate system, view coordinate
system, screen coordinate system

Graphical rendering of 3-D worlds
Painters algorithm
Z-buffering
Texture mapping
Shading, shadowing, and other lighting effects
Ray tracing
Ray casting
Binary space partition trees

Case studies: Castle Wolfenstein, Doom, Quake
Networked games

Client-server/peer-to-peer
Organizing a client-server game as a set of Java
classes
Interface and game-play issues for networked
games

Selling a computer game
Review important points in game design and game

implementation

Table 1. Detailed outline of course topics.

the usual rough spots one might expect from offering a
course for the first time, the course succeeded in many
respects beyond my expectations. Each of the potential
advantages listed above proved true, and I became
convinced that courses developed along these lines create
excellent opportunities for upper-division students to
"bring it all together", integrating many of the lessons of a
typical computer science curriculum into a coherent and
educational package.

3 Course Materials

As there are so far not many college courses on computer
games, neither has anyone so far developed a college
textbook on the subject. The books that do exist on the

subject mostly present themselves as "self-teaching" books.
I did identify one book, Black art of Java game
programming, by Fan, Ries, and Tenitchi [2], that served
the purpose of a textbook fairly well. I was also able to
find a few books that I used primarily for my own reference
in developing projects and lectures [5, 10, 12, 17]. Finally,
I supplemented the textbook with a variety of readings
available on the world-wide web [1, 11, 14].

One of the primary difficulties in finding a good textbook
was a problem that is endemic to much of computer science
education; these books quickly become outdated. One of
the books that best described computer game concepts [12]
was written in 1994, and its examples were written for
DOS using a mixture of C and assembly language. In just

261

~,, : ~ ~) ~ i ~ ' ~ - ~ - : ~ - z ~ - • ; " ~ : '~ ,~ •

those few years, much of that book's content has simply
become obsolete. Even the textbook I selected used
version 1.1 of Java, while I encouraged the students to use
the most current version (Java version 1.2). However, I feel
the Fan, Ries, and Tenitchi book provided the best
combination of conceptual discussion, emphasis on object-
oriented design, and illustration of examples with
understandable code. This particular book pretends not
even to assume any prior knowledge of Java (although it
certainly requires previous programming experience), but I
did not make that assumption about my own students.

4 Language Issues

I may justly be criticized simply for selecting Java as the
programming language for a course on computer games,
because many of the most modem computer games demand
much more processing efficiency, and much more
sophisticated libraries, than Java currently comes anywhere
close to providing. However, in addition to a variety of
pedagogical reasons, I felt that Java at least makes for a
very clean prototyping language, and it is easy enough to
use that the students could concentrate on the higher-level
concepts of game design and implementation. The
sacrifice was that we ignored some important issues of
efficient design, because there were some types of games
we simply could not build in Java. Happily, in the time
since I taught this course, Sun Microsystems has made
significant strides in developing more sophisticated Java
libraries. New APIs exist for two- and three-dimensional
graphics processing, as well as processing of sound and
multi-media data [15, 16], so a future version of the course
might find Java even better suited for game development.

5 Course content

Table 1 provides a somewhat extensive outline of topics
covered in the course. Because of the level of detail in the
table, I will not describe each topic in further detail in this
text. Suffice it to say that the course touched on a number
of issues from a variety of subdisciplines in computer
science, including object-oriented design, computer
graphics, operating systems, threaded programming,
simulation, system design, interface design, networking,
peripheral management, sound processing, software
engineering, and 3-D processing. A key element of this
course is that the final project (described in the next
section) required students to understand and integrate each
of these elements into a coherent, robust, and entertaining
piece of software. Because of this, the final project
provides an appropriate "punctuation mark" on an
undergraduate study of computer science. With an added
focus on history, social and design issues, and the
mathematics of physical simulation, this point becomes
even more prominent for the study of computer science at a
liberal arts institution.

6 Course Projects, Assignments, and Tests

Much of the course involved small projects and
assignments to exercise the concepts covered in the reading

and lectures. The initial project went together with
discussions on game design, genres of computer games,
and interface issues. It also provided a nice "ice breaker"
for the course. The students were required to play and
rigorously review a commercial computer game. The
intent of this project was to get students used to thinking
about what makes different types of computer games good
or popular, and what types of design issues they should
keep in mind for their own games. The discussion focused
particularly on identifying unifying themes of design and
implementation across the wide variety of types of games.

The second project required the students to take an existing
game that I developed (a very simple pong game, where a
paddle plays "hand ball" against walls), and extend the
existing object-oriented structure into a simple version of a
"breakout" game (where a paddle bounces a ball into
bricks, which then disappear from the screen). Aside from
implementing initial game concepts (such as sprites and
animation), this required students to build a new system
within a pre-established framework involving a moderate
number of classes and objects. Students also learned how
well "game worlds" can be represented by objects and their
interactions. Thus, this project also served as an exercise in
the usefulness o f object-oriented design where its
application is very natural, and as a small-sized exercise in
software engineering.

The third project required the students to turn their
"prototype" breakout game into a professionally styled
game including sound effects, bitmaps and animation,
game-play extensions, and an overall atmosphere or theme
for the game. Again, as well as focusing on game-specific
concepts (such as sound, bitmapped animation, collision
detection, and sophisticated sprite management), the
students had to make significant extensions to their own
design and implementation. This once again provided a
glimpse at a more realistic software cycle than students
experience in many computer science courses.

The final two significant homework projects focused more
specifically on isolated issues discussed in class. The first
was an exercise in using matrices to transform coordinate
systems for computer graphics. Although most graphics
libraries insulate today's programmer from such low-level
issues, this homework reflected my opinion that
programmers should understand to some extent the tools
they are using. This also provided an opportunity for
students to experience some "hard-core" elements of
computer graphics, at a college that otherwise does not
regularly offer a course on computer graphics. This
experience was supplemented by the availability of
sophisticated tools for 2-D and 3-D graphics, which the
students used to build graphics for their games. The final
assignment involved various methods for modeling
different types of physics within a game world. This
assignment required students not only to learn some simple
types of mechanics, but how to simulate those mechanics
by programming a simple virtual world.

262

A primary focus for the course was a large final project
(there was no final exam in the course). Students worked
individually, or in groups of 2 or 3, on a game of their
choosing. They could choose almost any genre of game
they desired, and the amount of work required depended on
the type of game and number of group members. Everyone
was at least required to produce a working prototype by the
end of the course (the games were then put on display for
the campus community). In addition, the project
requirements specified that each student demonstrate
competency in a set of core issues, including good quality
graphics and animation, sound effects and music, efficient
sprite management, modeling the world with physics-based
and/or state-based programming, good user interface design
and implementation, and building efficient and modular
code. The students were also encouraged to incorporate
other elements of computer game technology, such as
three-dimensional graphics and animation, high-fidelity
physics modeling, multi-player or networked game playing,
and sophisticated sprites or intelligent agents. Following is
a summary of the final projects generated by the members
of this class:

1 Three-dimensional automobile racing

2 Graphical adventure through the sewers of Manhattan

3 Networked, multiplayer blackjack

4 Strategic exploration and combat

5 Role playing and puzzle solving in a fantasy world

6 Graphical interactive fiction for chiltlren

7 "Super breakout" with puzzles inspired by academic
life at Colby College

The final project began with initial design proposals just
before the halfway point in the semester. In retrospect, and
in response to student comments, I recommend that future
courses start the initial design very much toward the
beginning of the course, and involve the final project
throughout the course, in order to give the students more
time to implement various design ideas. Naturally, this can
sometimes be a tricky tradeoff against the smaller projects
that are also part of the course.

Finally, there was a single midterm examination about two
thirds of the way through the course. This exam enabled
me to have an additional point of evaluation for the
students, particularly with regard to some of the course
concepts that might not get adequately exercised in the
course projects. At the time of the midterm, the course had
covered most of the basic concepts of game design and
implementation, and we were yet to discuss some advanced
concepts such as three-dimensional graphics and
networking.

7 Ulterior Motives

Aside from my own interest in (and enjoyment of)
computer games, I did have some ulterior motives when
developing this course. My own research involves the
development of intelligent, synthetic characters, for real-

time, simulated environments [7, 9]. Aside from the
commercial possibilities, state-of-the-art computer games
provide a wonderful environment for research into
interactive intelligent agents. Although I was not able to
include a unit on "game AI" in this version of the course, I
certainly hope to draw some students from the course into
this interest. It is no coincidence that instructors for all
four of the other courses I have mentioned are active
researchers in the field of artificial intelligence. As it turns
out, all of the other courses have included more o f an
emphasis on "game AI" in their courses than I did in mine.

I believe such ulterior motives are entirely appropriate, and,
for a computer games course, should by no means be
restricted to the area of artificial intelligence. I can easily
imagine computer games courses with special emphases on
other areas o f computer science, such as computer
graphics, networking, user interface design, social
implications of computing, etc. As I hope I have conveyed,
each of these areas ought to be addressed during the course
of computer game design and implementation, and there is
ample room for an instructor to emphasize favorite issues.

8 Closing

A course in computer game design and implementation
provides a wonderful integration of many concepts in
computer science for a heavily project-oriented course.
Judging from my final evaluations of the students, together
with their evaluations of me, the students were enthusiastic
(even if slightly over-worked) and effectively learned quite
a bit of material and a number of skills, even though they
had been exposed to many of these concepts in relative
isolation in previous courses. I personally was pleased to
be able to cover such a wide variety of technical concepts
in front of an engaged audience.

Because this was an experimental course at Colby College,
it does not currently appear as a regular entry in the catalog
or curriculum. Whether it will be taught again at Colby
depends in large part on resource availability and the plans
for future academic directions within the department. In
any event, I endorse the notion that an upper-division
course on computer game design and development would
fit quite well into most undergraduate computer science
curricula. The courses at the University of North Texas
and the University of Michigan are regular offerings. I am
also aware of one university in the United Kingdom that
now offers two separate courses on developing computer
games. I believe that additional colleges and universities
should strongly consider offering such a course.

Materials from my course, including lecture notes, project
descriptions, and some software, are currently available on
the world-wide web [6]. This web site also includes some
of the student projects, which can be run (at least on some
browsers) as Java applets. The final projects (as of this
writing) are not yet available on the web, but are available
for educational use by getting in touch with me.

263

-' .: .

References

[1] Crawford, C. The art of computer game design, 1997.
Online. Internet. [November30, 1999]. Available
WWW:
http://www.vancouver.wsu.edu/fac/peabody/game-
book/Coverpage.html.

[2] Fan, J., Ries, E., and Tenitchi, C. Black art of Java
game programming. Waite Group, 1996.

[3] Forbus, K., and Bachmann, A. Computer game
design, 1998. Online. Internet. [November 30, 1999].
A v a i l a b l e W W W :
http://www.cs.nwu.edu/academics/courses/c95-gd/.

[4] Hodgins, J., Bruckman, A., and Metoyer, R.
Electronic game programming, 1998. Online.
lnternet. [November 30, 1999]. Available WWW:
http://www.cc.gatech.edu/classes/cs4803 98 winter/.

[5] Holder, W., and Bell, D. Java game programming for
dummies. IDG Books Worldwide, 1998.

[6] Jones, R. M. Design and implementation of computer
games, 1999. Online. Internet. [November30, 1999].
A v a i l a b l e W W W :
http://www.cs.colb¥.cdu/~rjones/courses/cs398/.

[7] Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P. G., and Koss, F. Automated intelligent
pilots for combat flight simulation. AI Magazine,
20(1) (1999), 27--41.

[8] Laird, J. E., and Assanie, M. Computer game design
and implementation, 1998. Online. Internet.
[November 30, 1999]. Available WWW:
http://ai.eecs.umich.edu/soar/Classes/494/.

[9] Laird, J. E., and Jones, R. M. Building advanced
autonomous AI systems for large scale real time
simulations. Computer Games Development
Conference (1998). Long Beach, CA.

[10]Lamothe, A. Windows game programming for
dummies. IDG Books Worldwide, 1998.

[11] Nelson, G. The craft of the adventure, 1995. Online.
Internet. [November 30, 1999]. Available WWW:
ftp://ftp.gmd.de/if-
archive/info/Craft.Of.Adventure.letter.ps.

[12] Lamothe, A., Ratcliff, J., Seminatore, M., and Tyler,
D. Tricks of the game programming gurus. Sams
Publishing, 1996.

[13]Parberry, I. Computer game programming, 1999.
Online. Internet. [November 30, 1999]. Available
WWW: http://mycroft.csci.unt.edu/csci4050/.

[14]Sawyer, B. The getting started guide to game
development, 1995. Online. Internet. [November 30,
1 9 9 9] . A v a i l a b l e W W W :
http://www.cs.colby.edu/---rjones/courses/cs398/lecture.
s/gamfaq.txt.

[15]Sun Microsystems. Java 2D API, 1999. Online.
Internet. [November 30, 1999]. Available WWW:
http://www.javasoR.com/products/j ava-
media/2D/index.html.

[16] Sun Mierosystems. Java platform optional packages,
1999. Online. Internet. [November 30, 1999].
A v a i l a b l e W W W :
http://www.javasoR.com/products/OV_stdExt.html.

[17]Tieskotter, K. Black art of Macintosh game
programming. Waite Group, 1996.

264

