
Invited Editorial

Invited Editorial

Dropping CS Enrollments: Or
The Emperor’s New Clothes?

Bill Manaris
Computer Science Department

College of Charleston
Charleston, South Carolina USA

manaris@cs.cofc.edu

According to CRA [1], the number of new CS majors
dropped by approximately 50% from Fall 2000 to Fall
2006. So, what happened right before Fall 2001 when the
CS enrollments started dropping?

There are two anecdotal, yet widely accepted
explanations: (a) the “dot-com” bust, and (b) outsourcing.
Interestingly, the “dot-com” bubble seemed to be at its
highest during 2000 [2], so this is definitely not what
initiated the mass exodus of CS students. Could
outsourcing alone have this effect? Perhaps.

It’s hard to imagine that any single event (e.g., dot-
com bust) would immediately affect CS enrollment rates.
We need to account for news and word-of-mouth to travel
and become part of conventional wisdom (e.g., “you do not
want to be a CS major because…”).

Another Possibility
Here are two interesting trends in CS education, which
started a few years earlier and culminated around Fall 2001
[3]:
o the use of C++ and Java (both industrial-strength OO

programming languages) in CS1 increased from 39%
(1996-97) to 56% (1997-98) to 72% (1998-99) to 76%
(1999-2000) to 89% (2001-02) to a projected 96%
(2002-03).

o the adoption of object-oriented as the primary
programming paradigm (instead of procedure-oriented)
changed from 36% (1995-96) to 55% (1996-97) to 74%
(1997-98 and 1998-99) to 83% (1999-2000) to 82%
(2001-02).

So here are two questions to consider:

What evidence do we have that introducing OO in CS1
is beneficial, in terms of student retention and performance
in later courses?

What evidence do we have that using Java or C++ as

the CS1 primary language is beneficial, in terms of student
retention and performance in later courses?

As I was pondering these questions, I remembered
Jakob Nielsen’s thoughts on why usability is important [4]:

On the Web, usability is a necessary condition for survival. If
a website is difficult to use, people leave. If the homepage
fails to clearly state what a company offers and what users can
do on the site, people leave. If users get lost on a website, they
leave. If a website's information is hard to read or doesn't
answer users' key questions, they leave. Note a pattern here?
There's no such thing as a user reading a website manual or
otherwise spending much time trying to figure out an
interface. There are plenty of other websites available; leaving
is the first line of defense when users encounter a difficulty.

As I read this I could not help but think of the potential

connection between the choice of CS1 programming
language/paradigm and student enrollments/retention.

This is not to say that OO is bad. Nor that Java and
C++ are bad languages. However, we need to consider the
possibility that they make computer science appear very
hard to beginning students.

How Hard Is it to Program?
Alan Kay, in his paper “The Early History of Smalltalk”
states [5]:

When teaching [programming] to 20 nonprogrammer adults,
they were able to get through the initial material faster than
children, but, just as it looked like an overwhelming success

inroads — SIGCSE Bulletin - 6 - Volume 39, Number 4 2007 December

Invited Editorial

was at hand, they started to crash on problems that didn’t look
to me to be much harder than the ones they had just been
doing so well on. … E.g., make a little database system that
would act like a card file or rolodex. They couldn’t even come
close to programming it. Such a project was well below the
mythical ‘two pages’ for end-users we were working with.
After showing them the solution, I realized this little program
contained 17(!) nonobvious ideas. And some of them were
like the concept of the arch in building design: very hard to
discover, if you don’t already know it.

import java.util.*;

public class Triangle
{
 public static void main (String[] args)
 {
 Triangle t1 = new Triangle();
 Scanner input = new Scanner(System.in);
 int a = input.nextInt();
 int b = input.nextInt();
 double c = t1.hypotenuse(a, b); In this context, here are two typical programs, in Java

and in Python, to calculate length of the hypotenuse of a
triangle, given the length of the two legs. Why Java and
Python? Because both are very successful languages in
industry, and both are used to introduce computer science
to CS1 students.

 System.out.println(c);
 }

 public double hypotenuse(int a, int b)
 {
 return (Math.sqrt((a*a) + (b*b)));
 } Consider the number of new concepts or “nonobvious

ideas” required to comprehend/write each of these
programs.

}
Figure 1. Pythagorean Theorem in Java.

 Java
from math import * For the Java program (see Fig. 1), a programmer needs to

master the following “nonobvious ideas”:

def hypotenuse(a, b):

 return(sqrt((a*a) + (b*b)))
1. libraries (i.e., import java.util.*;)
2. class x = input()

y = input() 3. encapsulation and information hiding (e.g., public vs.
private, etc.)

print hypotenuse(x, y) 4. class name must be the same as program file name
 5. blocks (i.e., { ... }) Figure 2. Pythagorean Theorem in Python. 6. method

7. special method main() (i.e., program entry point by
Java VM)

8. static vs. non-static methods
9. void vs. value returning methods

10. parameter passing
11. arrays (i.e., String[] args)
12. command-line parameter passing (i.e., String[] args)
13. class instantiation (class vs. object)
14. you may instantiate an object within its own class

(i.e., chicken-and-egg paradox)
15. statement terminator (i.e., ;)
16. data types
17. primitive data types vs. non-primitive data types
18. variable
19. assignment
20. variable declaration
21. input
22. special class Scanner
23. input streams, e.g., System.in
24. class member method invocation (e.g.,

input.nextInt())
25. iterators (e.g., nextInt())
26. output (i.e., System.out.println())
27. hierarchical composition (i.e., System constains

object out)

28. algebraic expressions
29. Math library (i.e., sqrt())
30. return statement

Python
For the Python1 program (see Fig. 2), a programmer needs
to master the following “nonobvious ideas”:

1. module (i.e., from math import *)
2. function
3. blocks (i.e., indentation)
4. statement terminator (i.e., newline)
5. functions may or may not return a value
6. parameter passing
7. variable
8. assignment
9. input (i.e., input())

10. output (i.e., print)
11. algebraic expressions
12. return statement

1 If you are new to Python, see [6, 7].

inroads — SIGCSE Bulletin - 7 - Volume 39, Number 4 2007 December

Invited Editorial

The above is a generic, simple (rather typical?)

programming task. Given human cognitive limitations
(e.g., the 7 plus-or-minus 2 rule [8]), it is not surprising that
programmers report at least a 3 times increase in
productivity when they move from Java (or C/C++) to
Python [9, 10]. It is about task interference – how much do
you have to focus on the tool (e.g., language syntax,
semantics, conceptual model, etc.) vs. the task you are
trying to perform (i.e., problem solving).

Also, the above comparison does not capture the
amount of effort required to master each of the required
concepts. Some concepts are easier to master than others
(e.g., “statement terminator” vs. “class”). Also, a single
concept may be easier to master in one language vs.
another (e.g., “input” or “method/function”). For instance,
McConnell and Burhans [11] observed that:

The average size for the Java books in our study is 2.25 times
the average size of the Fortran books and 1.95 times the
average size of the Pascal books. From the perspective of a
course, the authors of three of the four Java books we
examined expect that their entire book (averaging 880 pages)
will be covered in one semester. This amounts to 22 pages per
class or about 66 pages per week that a student is expected to
prepare.

It would be interesting to generate a relative index of

difficulty by, say, counting the number of lines used in a
typical CS book to explain each of these concepts, given
the syntax, semantics, and conceptual model of each
language. These are the same lines of text our students are
expected to read, in order to master the concepts.

Usability of Programming Languages
As we are collectively exploring the reasons for our
dropping enrollments, it is interesting to note that a
programming language is just another user interface (UI).
Similar to other UIs such as MS-DOS, Unix, Mac OS X,
and Windows, programming languages are an abstraction
barrier between the end-user and the underlying machine.

Programming languages, when viewed as user
interfaces, may be evaluated formally through usability
techniques. According to Jakob Nielsen [4], there are
many different attributes for measuring the quality of a user
interface, but two key ones are utility and usability. Utility
asks the question “does the UI provide the necessary
functionality to achieve your tasks?” Theoretically
speaking, if a programming language is Turing complete, it
has adequate utility for all computable tasks. But most
computer scientists would agree that Turing-completeness
is not enough.

Usability is a “quality attribute that assesses how easy
user interfaces are to use” [4]. If you agree that a
programming language can be thought of as a
programmer’s user interface to a Turing machine, then we
may explore its usability in terms of these dimensions:

o Learnability: How easy is it to perform basic tasks the

first time programmers encounter the programming
language?

o Efficiency: Once programmers have learned the
language, how quickly can they perform typical tasks?

o Memorability: When programmers return to the
language after a period of not using it, how easily can
they reestablish proficiency?

o Errors: How many errors do programmers make, how
severe are these errors, and how easily can they recover
from the errors?

o Satisfaction: How pleasant is it to use the language?

According to Nielsen:

Usability and utility are equally important: It matters little that
something is easy if it's not what you want. It's also no good if
the system can hypothetically do what you want, but you can't
make it happen because the user interface is too difficult.

Examples
How can we go about evaluating the usability of a
programming language? Here is a nice example from
NASA JPL: http://oodt.jpl.nasa.gov/better-web-app.mov .

In it, the evaluator picks certain tasks (e.g., build a
“Hello World” application), and tries to perform them with
different programming environments. You watch him
work in real time (via screencast), making errors and
correcting them, and in the end reporting quantitative
results. Powerful! Contrast this with the anecdotal
diatribes we consume or generate, during language wars, of
the type “feature X obviously helps reduce bugs” or
“feature Y is better for software design”. As a scientist, I
vote for the scientific method.

Clearly, in any usability evaluation study, the choice of
tasks is essential. You pick the wrong tasks and your results
are misleading.

So, the other day, I selected a small task and wrote
code both in language A and language B.

Results
With language A, I had to look up two things in the API,
had 9 compiler errors, one semantic error, and one
“headache” error. (What is a “headache” error? View the
above video.)

With language B, I had only one syntax error.
The number-of-lines ratio was 3 to 1 (A to B). Same

task.
Before you ask me which languages I used and what

the task was, I challenge you to do the same with your A
and B, and your task of choice. Try a task from CS1, for
example. Just make sure it is not tied to syntax (e.g.,
inheritance vs. interfaces).

inroads — SIGCSE Bulletin - 8 - Volume 39, Number 4 2007 December

Invited Editorial

Do you remember the “earth-shaking” experience of
using a mouse for the first time? Or, oh my Gosh, the first
time you interacted with a graphical user interface?

Conclusion
This editorial extends an invitation to the CS education
research community to explore the usability of
programming languages used in CS education and the
effect these languages may have on achieving our goals as
educators, including student retention and learning.

We are still waiting for our programming languages to
catch up and move into the 90s, into the visual domain.
Granted there have been several attempts (e.g., see [13] for
a thorough overview). However, no visual programming
language can currently handle sizable development efforts.
However, the potential is there. For example, see Alice and
Scratch – two recent “proposals” on what visual
programming languages might look like [14, 15]. Notice
how they both support sequence, selection, and iteration.
What’s missing? See if you can compare them in terms of
usability – there are significant differences. Why are they
so effective? But perhaps that’s a topic for a future op-ed
piece.

I have already shared these ideas with several
colleagues, and, to the best of my knowledge, there are at
least a couple of CS ed research activities underway related
to this theme. But there is so much more to explore.

According to van der Veer and van Vliet [12], in the
eyes of the user the user interface is the system. We should
consider the possibility that, in the eyes of our CS1
students, the programming language/paradigm they are
exposed to is… Computer Science.

This is not to say that we should all abandon Java and
move to Python or Ruby. This is not to say that Python is
the best language for CS1.

This article is about the possibility that there is no
absolute best language/paradigm for CS1 (the Emperor’s
New Clothes). Instead, at this period of “lean cows” each
department should thoughtfully consider what
language/paradigm is best for your students’ preparation,
abilities, and tasks you expect them to master in CS1. Then
perhaps you might discover that your retention rates
improve drastically, as anecdotal evidence suggests, and in
accordance with what Human-Computer Interaction
teaches us about usability and its effects on the
effectiveness and popularity of systems.

Have you considered that our programming user
interfaces are still built on 70s user interface technology
and concepts (and, even at that, not very well)? To put it
bluntly: our modern programming languages are nothing
more than “supersized” command-line interfaces. In
“Strong Typing vs. Strong Testing” Bruce Eckel suggests
[10]:

It takes an earth-shaking experience - like learning a different
kind of language - to cause a re-evaluation of beliefs. In the minds of our beginning students, the

programming language/paradigm we expose them to in
CS1 is computer science.

References
[1] Vegso, J. “Continued Drop in CS Bachelor's Degree Production and Enrollments as the Number of New Majors Stabilizes”,

Computing Research News, 19(2), Mar. 2007.
[2] Wikipedia, “Dot-com bubble”, accessed Sep. 24, 2007.
[3] McCauley, R. and Manaris, B., Comprehensive Report on the 2001 Survey of Departments Offering CAC -Accredited Degree

Programs, May 2002, http://www.cs.cofc.edu/~mccauley/survey.
[4] Jakob Nielsen, “Usability 101: Introduction to Usability”, Aug. 2003, http://www.useit.com/alertbox/20030825.html
[5] Kay, A. “The Early History of Smalltalk“, ACM SIGPLAN Notices, 28(3), March 1993.
[6] Zelle, J.M. “Teaching Computer Science with Python”, SIGCSE 2003 Workshop #4 transparencies, accessed Sep. 25, 2007,

http://mcsp.wartburg.edu/zelle/python/sigcse-slides.pdf
[7] Hetland, M.D. “Instant Python”, accessed Sep. 25, 2007, http://hetland.org/writing/instant-python.html
[8] Miller, G.A. (1956), “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information“,

The Psychological Review, vol. 63, pp. 81-97.
[9] Ferg, S. “Python & Java – A Side-by-Side Comparison”, http://www.ferg.org/projects/python_java_side-by-side.html, accessed Sep.

25, 2007.
[10] Eckel, B. “Strong Typing vs. Strong Testing”, http://www.mindview.net/WebLog/log-0025, accessed Sep. 25, 2007.
[11] McConnell, J.J. and Burhans, D.T. (2002), “The Evolution of CS1 Textbooks“, 32nd ASEE/IEEE Frontiers in Education Conference,

November 6-9, 2002, Boston, MA, pp. T4G1-T4G6.
[12] van der Veer, G. and van Vliet, H. (2003), “A Plea for a Poor Man’s HCI Component in Software Engineering and Computer Science

Curricula; After all: The Human-Computer Interface is the System”, Computer Science Education, 13(3), pp. 207-225.
[13] Kelleher, C. and Pausch, R. (2005), “Lowering the Barriers to Programming: A Taxonomy of Programming Environments and

Languages for Novice Programmers”, ACM Computing Surveys, 37(2), Jun. 2005, pp. 83-137.
[14] Stage3 Research Group, “Alice: Free, Easy, Interactive 3D Graphics for the WWW”, Carnegie Mellon University,

http://www.alice.org/ .
[15] Lifelong Kindergarten Group, “Scratch: Imagine, Program, Share”, MIT Media Lab, http://scratch.mit.edu/.

inroads — SIGCSE Bulletin - 9 - Volume 39, Number 4 2007 December

Invited Editorial

Credits
The Pythagorean Theorem code was written by my students, Brian Smith and Jeff Shumard. My department colleagues contributed
through various discussions and thoughtful insights, especially Renée McCauley, Walter Pharr, George Pothering, and James Wilkinson.
This work has been supported in part by NSF grant DUE 02-26080.

Invite a Colleague to Join

SIGCSE

www.sigcse.org

inroads — SIGCSE Bulletin - 10 - Volume 39, Number 4 2007 December

