
The Use of MUPPETS in an Introductory Java
Programming Course

Kevin J Bierre
Rochester Institute of Technology

102 Lomb Memorial Drive
Rochester, NY 14623-5608

585-475-5358

kjb@it.rit.edu

Andrew M Phelps
Rochester Institute of Technology

102 Lomb Memorial Drive
Rochester, NY 14623-5608

585-475-6758

amp@it.rit.edu

ABSTRACT
“The Multi-User Programming Pedagogy for Enhancing
Traditional Study” (MUPPETS) system has been under
development at RIT for the last three years. This multi-user
environment is designed to allow students to develop visible 3D
objects in Java within a game-world environment with minimal
knowledge of graphics programming. Students can interact with
these objects through an interface built into the system. (Technical
aspects of the MUPPETS system were previously published by
the authors at CITC4) [1].
In testing the usefulness of MUPPETS as a teaching tool, we have
developed a series of course modules that use the environment as
its programming environment. The existing “Programming for
Information Technology III” course is the ideal place to perform
an initial test of this nature, as students have some base familiarity
with the Java language but have not yet completed their
undergraduate programming core. Students in this course have a
final group programming project that we intend to use as the
initial test, and develop further MUPPETS modules downwards
towards the initial freshman experience.
In the past students used a package called “Robocode”, which is
available from IBM [2]. This project involved programming a
virtual robot that could “fight” in an arena according to some
agreed upon set of rules, which were developed both as part of the
Robocode package and discussed and agreed upon in lecture.
While the students enjoyed this project, the proliferation of
available code on the Internet for the framework led to this project
being removed from the course. We have implemented a variant
of “RoboCode” in MUPPETS that addresses the code availability
issue and provides a more interesting and graphically rich
environment for the students.
This paper shall discuss the reasons for the implementation, what
we expect the students will gain from the use of MUPPETS based
project, and possible methods of comparing this approach to the
methods previously used in this course. Also discussed are

additions to the MUPPETS system made to facilitate its classroom
use including a re-implementation of the Swing graphics classes
such that 2D interfaces are available in 3D, and model loading
and texturing tools that allow custom robot creation and
customization.

Categories and Subject Descriptors
K. Computing Milieu
K.3 Computers and Education
K.3.2 Computer Uses in Education
Subject Descriptor: Collaborative Learning.

General Terms
Experimentation, Human Factors, Languages, Theory.

Keywords
Game Programming, Programming Education, Virtual Worlds,
Graphics.

1. INTRODUCTION
Many students find learning programming to be a difficult and
unpleasant task. There are a variety of possible reasons for this
perception, such as a lack of motivation about the subject matter,
a lack of prerequisite skills such as problem solving, or just the
reputation of the course. [3]

The Information Technology department at the Rochester Institute
of Technology has been attempting to make the subject matter
more accessible to students through a variety of changes. Students
can proceed through our introductory courses in either three or
four quarters [4]. The longer sequence allows the students to
concentrate more effort on areas that are known to be
troublesome, such as object-oriented concepts. We are also
investigating the use of cohorts of students to see if that improves
retention within the program.

In addition to the above changes, we are planning to introduce a
collaborative virtual environment (CVE) called MUPPETS into
the pedagogy of how the courses are delivered. The initial use of
MUPPETS will be in the last introductory programming course
as part of the final project that is an integral part of the
curriculum. As more modules and resources are developed, and
more testing can take place, we plan to introduce MUPPETS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGITE'04, October 28-30, 2004, Salt Lake City, Utah, USA.
Copyright 2004 ACM 1-58113-936-5/04/0010...$5.00.

122

earlier in the course sequence, allowing the students to become
familiar with it well in advance of the final project.

2. CURRENT ISSUES
As part of the final programming course, students spend last 2-3
weeks of the quarter working on a group programming project.
For many students, this is their initial introduction to working on
a programming team, so care is taken to cover topics such as
design documentation, project planning, creating test plans, and
other aspects of team-oriented programming.

In the past, students created various types of client-server systems,
including chat rooms, small multi-user logic games, and simplistic
studies of encryption. While many found this moderately
interesting, there was not a large degree of enthusiasm about the
topics provided. However, when we located a project called
“Robocode” through the IBM Alphaworks site, this seemed to
finally catch their interest.

Robocode is a Java based API that allows students to create
robots that can then be used to fight one another in virtual 2-
dimensional arena. Students had to design their robots using the
API methods. In order to do this successfully, they needed a solid
understanding of various parts of the language.

Robots were tested in a tournament on the last day of class. In
addition, students had to deliver a presentation on their design and
what they learned from the experience. Overall, the students
appeared to have enjoyed the project and it encouraged them to
explore areas of the Java language that were not presented in
class.

The first quarter that Robocode was used was deemed very
successful. Unfortunately, later quarters did not work out as well.
The major problem was the increasing availability of Robocode
code on the Internet. It was possible for students to create a robot
by taking bits of other robots that were available online and
patching them together to form a new one. It was difficult to tell
what code a group developed and what code came from other
sources.

Students also had issues with the user interface. Robocode’s
interface is a top view of the arena and does not have any sound
capability. There is no way to alter the view. We suspect that
rising expectations of a student population familiar with current
computer and video games was the source of the complaints.

Finally, we noted that the victorious robots tended to be “wall
huggers”. (Meaning that they moved to the outer wall and spent
their time circling the arena.) This meant that a poor choice of
tactics early in the design phase could affect a teams overall
performance, and that there was seemingly an obvious “best
strategy”, thus discouraging many groups from trying several
approaches to the problem.

A proposed solution to the problem was to develop our own
package for the final project, similar in some respects to the
Robocode system, but also highly customizable and with
advanced capabilities. By basing it on MUPPETS, we addressed
the above issues easily:

• With our own package, we could remove the code reuse
issue by updating the package with different behaviors

between quarters. Code that was working in one quarter
could be invalid the next.

• MUPPETS has the three dimensional views that
students are used to seeing in professional quality video
games. In fact, it has been used to drive virtual reality
displays and a large number of input devices, including
game controllers and other haptic interfaces. It also
contains spatial sound capability.

• By having control of the package, we can make
modifications to avoid the appearance of an
overwhelmingly successful strategy. Indeed, the entire
arena could be changed such that strategies that were
largely successful one quarter would be easily beaten in
future matches.

3. RECENT RESEARCH IN CVE’s
Over the past few years, a variety of research has been done on
various types of collaborative virtual environments to determine
their effect when used to teach programming.
In one case, the LambdaMOO software originally developed by
Xerox PARC was used to create a text based interactive
environment. Course material was introduced through lectures.
Students would work within the MOO environment on
assignments. They would be able to communicate with other
students, as well as the instructor. At the end of the five week
experimental period, student’s knowledge was assessed through
an examination. [5] Student reported that the virtual environment
helped them learn the material. The examination results appear to
bear this out.
In two cases, Lego Mindstorms robots were used to teach
programming. One case relied on the physical robots as the basis
for learning to program. [6] In the other case, a simulator was
provided and student work was initially tested on the simulator
prior to being added to the robot. [7] While these methods appear
to have met with some success, they are not true CVE’s . (An
interesting aspect of use of the physical robots was the discovery
by the students that plans that looked good on the screen and
performed well on the simulator often did not hold up well when
moved to a real environment.)
Karel the Robot has been used to teach programming since the
1980’s. An update of the original ideas was produced to introduce
object oriented programming. [8] Unfortunately, it used a
proprietary language. The authors of that system gave permission
for a group to create a Java version of Karel++, using the same
type of virtual world the text describes. [9] This group also took
five weeks to introduce basic object oriented concepts to
introductory students. While this study did not perform a formal
evaluation of student performance, they felt the students learned
the material and had fun in the process. The visual component of
the robot environment was mentioned as a major feature in
gaining the student’s interest in the topics presented.
The PUPPET project was created to investigate methods to
encourage reflection on what a student has recently experienced.
In this study, children were placed in an environment where they
interacted with characters. The children were able to reflect on
what they had just experienced within the CVE and draw
conclusions. The students found the environment engaging and
had no problems determining how to interact. This seems to

123

indicate that this type of environment could be used for teaching
at an elementary or secondary school level. [10]

4. THE MUPPETS ENVIRONMENT
MUPPETS provides students a three-dimensional view of the
environment similar to that found in commercial grade video
games, coupled with a command console and a Java IDE. These
are the three primary modes that students use when working
within MUPPETS. Each is described in detail below:

4.1 Normal View
The view first seen by a student when they enter MUPPETS is
shown in Figure 1. They are represented by an avatar and have a
camera that they can adjust to control the view they can see. The
field of vision is about 60 degrees, which is less than actual field
of the human eye.
Under the regular version of MUPPETS, the student can move
their avatar around and interact with other objects that they create
or find within the environment. This is done using keyboard
commands.

Figure 1. Initial view of MUPPETS environment

The version that is being used for the initial test is a bit different,
because the student is “along for the ride”. The robot they create
has a preprogrammed set of actions and the student has no real
control over its actions once the robot enters the arena.

4.2 The Console
The user can issue commands to MUPPETS through the console.
This allows keyboard input to affect the system. There are a
variety of commands that can be issued, although the primary
ones involve the creation and removal of objects. A key binding
mechanism is available that will allow commands to be mapped to
different keys, removing the need to bring the console up for
common operations

Figure 2. MUPPETS Environment with console displayed

4.3 The IDE
MUPPETS allows the student to create Java classes using a built
in integrated development environment. A student can select a
class to use as a parent to develop a new type of object. (All
classes must implement the Muppets interface) Or they can alter
the behavior of an existing class. The first step is to select a class
from the screen showing the possible options. (Figure 3)
Once a class has been selected, the student is placed in an editor.
From the editor, they can alter the code, save it on the local
machine, and compile. Compilation errors appear on the upper
part of the screen.

If the compile was successful, the student can immediately create
a new instance of the object and observe its behavior. This allows
for rapid development and debugging.

Figure 3. MUPPETS class selection dialog

124

Figure 4. MUPPETS IDE code editing screen

5. THE PROJECT
For the final project in the introductory programming sequence,
students create robots that will be used to “fight” in an arena.
This strategy was well received with the previous Robocode
project in terms of building class camaraderie as well as
motivating students through peer-pressure rather than grade-
oriented measures. Note that the term “fight” here refers only to
robot vs. robot competition: several winning strategies did not
revolve around violence to the other robot, but rather clever
manipulation of the surrounding environment.

The arena in which the “fight” takes place is a bounded space in
three dimensions. One of the problems we noted is the earlier
forms of this project was tendency for successful robots to hug the
outer wall. We eliminated that tactic by removing the outer wall.
In effect the arena wraps around so that robots exiting on one side
appear on the corresponding opposite side. (That behavior can be
altered if it turns out students develop tactics relying on the
arena’s behavior, from quarter to quarter to prevent code reuse.)
The arena is flat and contains no obstacles aside from the other
robot. For more complex battles, obstacles can easily be added,
and simple collision detection and avoidance routines are already
available in the base package.

Robots consist of a platform with a fixed laser weapon pointing
forward. The platform also contains a sonar unit. The students can
control the movement of the robot, the use of sonar to locate the
other robot, and the firing of the laser. This allows for a fairly
broad range of behavior: some strategies focus on movement and
dodging, others on continual fire and random sweeps of the area.
In almost all cases, it is likely that more than one strategy will be
successful, and that several have the possibility to win the
competition.

An interface is provided to students that describe the methods
they may use to program the robot. These methods were
developed to use existing MUPPETS code that requires a much
more detailed knowledge of the software and that is likely beyond
the typical introductory student. Thus, by creating a set interface,
or group of base functions for the students to work with in their
own classes, they are shielded from most if not all of the

complexity of drawing objects in three dimensions and dealing
with graphics programming in general. In fact, the core of the
graphics system is not even written in Java, it relies instead on a
complex integration of Java and C/C++ across the JNI [11]

The entire MUPPETS environment that the students use is
provide on a server all students can access through their
departmental account. Currently only the Windows and Linux
platforms are supported on the X86 32-bit architecture, but plans
to support other operating systems and hardware platforms are
currently being explored. All of the interface documentation is
available using the standard Java documentation format. In
addition, students are provided with the following documentation:

• Instructions on how to download and install MUPPETS on a
PC

• Instruction on how to start MUPPETS and use the standard
set of commands.

• Instructions on how to customize MUPPETS commands.

• An overview of what MUPPETS is and how it works, in
terms a new programmer can follow.

• Instructions on the use of the integrated development
environment.

• Documentation on the interface we use to program the
robots, with simple examples.

Sample robots are provided for the students to examine. This also
provides some opponents for use during testing. A screenshot of
a default tank implementation is presented in Figures 5A and 5B.

Figure 5A. Typical tank implementation from an aerial

perspective.

6. PROJECT CONSIDERATIONS
There are several goals that we try to complete as part of this
project. We feel that each of these areas are an important part of
the introductory programming experience.

6.1 Teamwork
Prior to starting this project, all programming assignments had
been individual work. It was deemed critical for students to be

125

Figure 5B.Close-up of a student created tank mesh.

exposed to the type of teamwork that would most likely be
required during their co-op blocks, and eventual induction into
the workforce.
Students are generally allowed to select their teammates, although
there have been cases where the instructor has altered the
composition of teams for various reasons. (For example, teams
made up entirely of students who have exhibited weak
programming skills). We have found that two person teams seem
to work best for this project. Three person teams lead to coding
conflicts, since there is only one major block of code that is used
for the project, and not usually enough distinctly separate tasks
that they can be divided across a larger team.
Another critical part of teamwork is peer evaluations. Each team
member evaluates themselves and their teammate. They look at
how much each contributed, how reliable they were, and how
much effort they put out. Additional comments can also be added
to the evaluation sheets.

6.2 Project Planning
This is also the first assignment that demands planning for
successful execution. The team is responsible for several
deliverables, including design notes, a journal, a presentation of a
prototype idea, and of course the final demonstration and
presentation. Some planning as a group is required to ensure all
requirements are met completely.

6.3 Testing
We have emphasized testing for the typical assignment. In this
project it becomes more critical, since the robot is expected to
compete in an arena in front of the entire class. This form of
motivation seems to increase the student’s interest in providing a
fully tested product, if for no other reason than to avoid
embarrassment during the trials.

6.4 Presentation Skills
As a group, programmers are not generally known for their
presentation skills. Unfortunately, it is a fact of the industry that a
programmer will be called upon to present their work to others. It
is important for students to have this initial experience. Faculty
prepare the students by going over basic presentation skills,
including specifics on presenting technical material such as

programming designs. As part of the requirements, all team
members are expected to participate in the presentation.

7. EXPECTED RESULTS
Students are expected to be able to demonstrate the following
skills at the end of the project:

• The ability to use a Java package and its associated
documentation to create a functioning program.

• The ability to define tasks, create a simple time line and
assign work to the members of the team.

• The ability to track their progress through the use of
design documents and a project journal.

• The ability to plan and deliver a presentation describing
important aspects of their project.

8. ASSESSMENT OF RESULTS
One of the major questions that need to be answered is whether
this project has increased the student’s knowledge of
programming and has met the expected results listed in section 7.

Much of this knowledge can be gained through the use of the
presentation. The presentation for this course is assigned by
providing the students with a set of questions to be answered.
Usually these are basic project post mortem project
deconstructions as seen in current literature. By adding additional
question regarding the expected results listed above, we should be
able to determine which goals have been met and which may need
to be adjusted. In addition, receiving the design documents and
journal from each team will provide some insight about how
effective their planning techniques were when creating the
program.

9. FUTURE WORK
Since this project is first being tested during the 2004-2005
academic year, we expect to make some changes to the project as
results become available.
One potential area of change would be in the arena. The addition
of obstacles would increase the complexity of the problem. This
could take the form of adding separate objects, such as houses or
wrecked robots to provide cover. Adding hills and valleys could
also alter to the terrain and provide several nuances in terms of
strategic advantage and robot AI. Changes to the way the arena
wraps around would also affect play.
Altering the robots themselves could also change the way the
game is played. Changes such as limiting the detection range or
changing the weapon used will have a major effect on the program
and the strategies incorporated for victory.

10. ACKNOWLEDGMENTS
The authors would like to thank RIT’s Provost’s Learning
Initiative Grants programs for providing the initial funding for the
MUPPETS project, as well as Sun Microsystems for matching
educational grants that made possible the initial development of
the system. The authors would also like to thank Jeffrey Sonstein
and William Stratton of the Information Technology Department
at RIT for their support in the project and their work in the initial
grant application, as well as Eydie Lawson, former Chair of
Information Technology for her continued support. A very

126

special thanks must be given to Ed Huyer, who implemented
much of the Robocode environment within MUPPETS, as well as
to Dave Parks and the MUPPETS team for their continued hard
work in developing the system and its capabilities. More
information and samples of the MUPPETS environment can be
obtained at http://muppets.rit.edu.

11. REFERENCES
[1] Phelps, A, Bierre, K, and Parks,D, MUPPETS: multi-user

programming pedagogy for enhancing traditional study,
Proceeding of the 4th conference on Information technology
education , October 2003, Lafayette, Indiana, USA, 100-105

[2] Nelson, M. Robocode: Online:
http://robocode.alphaworks.ibm.com/home/home.html

[3] Jenkins, T. On the Difficulty of Learning to Program. 3rd
Annual LTSN-ICS Conference, Loughborough University,
Leicestershire, UK, 2002, 53-58

[4] Whittington, K, Bills, D, and Hill, L, Implementation of
alternative pacing in an introductory programming
sequence, Proceeding of the 4th conference on Information
technology education , October 2003, Lafayette, Indiana,
USA, 47-53

[5] Towell, J and Towell, E, Reality Abstraction and OO
Pedagogy: Results from 5 Weeks in Virtual Reality,

OOPSLA ’03 October 26-30, 2003, Anaheim, California,
162-165

[6] Barnes, D, Teaching Introductory Java through LEGO
MINDSTORMS Models, SIGCSE ’02, Feb 27 – Mar 3, 2002,
Covington, Kentucky, USA 147-151

[7] Flowers, T, and Gossett, K, Teaching Problem Solving,
Computing, and Information Technology with Robots,
Journal of Computing in Small Colleges, 2002 17,2,
pg 45 – 55

[8] Bergin, J, Stehlik, M, Roberts, J, and Pattis, R, Karel++: A
Gentile Introduction to the Art of Object-Oriented
Programming, John Wiley & Sons, 1997

[9] Becker, B, Teaching CS1 with Karel the Robot in Java,
SIGCSE 2001, Feb 2001, Charlotte, NC, USA, 50-54

[10] Marshall, P, Rogers, Y, and Scaife, M, PUPPET: playing
and learning in a virtual world,
http://www.cogs.susx.ac.uk/interact/papers/pdfs/Playing%20
and%20Learning/Tangibles%20and%20virtual%20environm
ents/Marshall_IJCEELL.pdf

[11] Phelps, A and Parks, D, Fun and Games: Multi-Language
Development, Queue, Vol1,10, Feb 2003, 46-56

127

