
Inclusive Computer Science Education Using  
a Ready-made Computer Game Framework 

Joseph Distasio and Thomas P. Way 
Applied Computing Technology Laboratory 

Department of Computing Sciences 
Villanova University 
Villanova, PA  19085 

joseph.distasio@villanova.edu 
thomas.way@villanova.edu 

 

ABSTRACT 
Leveraging the prevailing interest in computer games among 
college students, both for entertainment and as a possible career 
path, is a major reason for the increasing prevalence of computer 
game design courses in computer science curricula.  Because 
implementing a computer game requires strong programming 
skills, game design courses are most often restricted to more 
advanced computer science students, yet real game design 
involves a diverse and creative team.  This paper reports on a 
ready-made game design and experimentation framework, 
implemented in Java, which makes game programming more 
widely accessible.  This framework, called Labyrinth, enables 
students at all programming skill levels to participate in computer 
game design.  We describe the architecture of the framework, and 
discuss programming projects suitable for a wide variety of 
computer science courses, from capstone to non-major. 

Categories and Subject Descriptors 

K.3.1 [Computers and Education]: COMPUTER AND 
INFORMATION SCIENCE EDUCATION – Computer Science 
Education  I.2.1 [Artificial Intelligence]: APPLICATIONS AND 
EXPERT SYSTEMS – Games. 

General Terms 
Design, Experimentation, Algorithms, Theory. 

Keywords 
Computer science education, game programming, artificial 
intelligence, computer graphics, user interface design. 

1. INTRODUCTION 
There is widespread and undeniable interest in computer games 
on the part of computer science students, and among college 
students in general [7].  Computer gaming is an enormously 
successful industry, responsible for pushing innovation in 

computing and providing careers for many computer science 
graduates.  Responding to the demand, the inclusion of computer 
game programming courses has become more commonplace 
internationally in college curricula [2,5,6], and evidence suggests 
that such courses boost student enrollment and retention in 
computer science programs [8]. 

When computer game programming is taught, it is frequently in 
upper level or capstone courses [6,8].  The reason for delaying the 
use of computer gaming courses is because it requires some 
programming and conceptual sophistication on the part of 
students.  Successful game programming requires familiarity with 
user interface design, data structures, object-oriented design, 
algorithms, software engineering, graphics, artificial intelligence, 
and plausibly just about any other topic common to a computer 
science curriculum.  Thus, it is no accident that computer game 
courses more frequently appear later in a student’s studies.  Even 
highly motivated students who attempt to download open-source 
or commercial game development frameworks from any one of 
many online resources [3], quickly realize that there is a steep 
learning curve and development of an entire game is a significant 
and time-consuming undertaking.  The very popular Gamelet 
toolkit [4] is such a framework that is ideal for experienced 
programmers, but is overwhelming for inexperienced 
programmers.  The interactive 3-D graphics software called 
ALICE [1] provides a fun and engaging first experience in 
programming for students at all levels, but using it for game 
programming requires significant time and experience. 

The goal of the research reported in this paper is the development 
of a flexible, easy-to-use and compelling computer game 
development framework for use by all levels of computer science 
students, both majors and non-majors.  The Labyrinth Game 
Design and Experimentation Platform is a framework 
implemented in Java that enables instructors to expose students to 
very specific aspects of computer game design within the context 
of topics covered in specific computer science courses.  The game 
takes place in an underground world where a torch-carrying hero 
character is chased by a fire-breathing monster through a maze of 
tunnels.  The hero attempts to navigate the maze, lit only by the 
limited light from the torch, and escape before being devoured by 
the growling monster.  The framework enables a student to apply 
the ideas from computer science classes to customize this arcade-
style game, which is in the genre of Pac-Man, using a level of 
computer programming suited to his or her ability. 

This work is an extension of a student programming project 
originally developed as a part of a large-team “company” 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom. 
Copyright 2007 ACM  978-1-59593-610-3/07/0006...$5.00. 
 

116



approach to a Software Engineering course [10].  The idea was 
explored further in a subsequent capstone Senior Projects course, 
and developed independently beyond that into its current 
framework as part of collaborative student-faculty research at the 
Applied Computing Technology Laboratory (ACT Lab) at 
Villanova University.  That such a project can evolve from a class 
project to a distributable educational programming package, and 
can engage the attention and excitement of both student and 
faculty alike for two years, have been pleasant and welcome 
discoveries. 

2. LABYRINTH ARCHITECTURE 
The architecture of Labyrinth is modular to enable easy 
customization of individual components or features of the game 
without extensive additional programming.  Following good 
object-oriented design practices and software engineering 
conventions [9], each module handles a distinct aspect of the 
game’s functionality.  This modularization isolates code specific 
to each game component in a clear and well-documented Java 
API.  When a student programmer wishes to explore a new idea in 
a certain aspect of the game, modifications are limited to the 
specific module that implements that functionality.  Figure 1 
illustrates the modular architecture of Labyrinth. 

 
Figure 1.  Labyrinth architecture. 

The Labyrinth framework, including all source code and 
programmer’s guide, is available for download from the ACT Lab 
web site (actlab.csc.villanova.edu).  The programmer’s guide 
explains the architecture and programmer interface in greater 
detail than is possible here.  Instructions are provided for 
rewriting modules, replacing modules, compiling, running, and 
changing the game’s graphical elements, with detailed and easy-
to-follow examples to assist instructors and students.  The guide 
also points out some online resources that could be of some help 
to those learning how to program their own game, or seeking to 
make more significant modifications to Labyrinth. 

2.1 Modules 
The Labyrinth framework consists of a number of individual and 
disjoint modules, each of which isolate a specific feature or 
function of the game.  These modules are: 

LabyrinthGUI module 

The first module is the LabyrinthGUI.  This module is responsible 
for settings related to the look and feel of the game, including the 
Graphical User Interface (GUI) and menus.  It defines the general 
appearance of the overall game screen.  This module would be of 
particular interest to a project or course in graphic design or user 
interface design, where the students learn to use code to create 
images on the screen. 

Screen modules 

The next modules deal with the layout of specific screens.  These 
modules are the InstructionsPanel, GameOverPanel, 
FinishedGamePanel, FinishedLevelPanel, and 
OpeningSplashPanel.  Each of these modules is responsible for 
the layout of their respective screens, and would also be of 
interest to graphic and user interface design students. 

PropertiesFile module 

The PropertiesFile module handles mapping external resources, 
such as pictures and sounds, to the internal code.  This module 
allows programmers to easily replace one resource with another, 
such as replacing the image of the monster with an image of a 
dinosaur, or the sound of echoing footsteps with footsteps in 
puddles of water.  Projects involving this module would be of use 
in an introductory programming course to demonstrate the use 
property files and the importance of using variables for easy 
modification and readability. 

GamePanel module 

The GamePanel module is comprised of a collection of smaller, 
related sub-modules.  This module controls the overall game play 
of the game, including all of the specific features that are handled 
by the CreateMaze and various Difficulty sub-modules described 
below. 

CreateMaze sub-module 

The CreateMaze sub-module dynamically generates the maze 
through which the game is played.  Each maze is generated 
randomly, and with a very low probability that a player will ever 
be presented with a maze they have seen before.  This sub-module 
would be of particular interest to an algorithm design class, 
offering students the opportunity to create an algorithm and 
implement it inside a working game.  Additionally, the 
implemented CreateMaze algorithm is based on a common depth 
first search algorithm, providing students with a good starting 
point. 

Difficulty sub-modules 

The group of Difficulty sub-modules handles changing the level 
of challenge associated with game play.  Difficulty is 
implemented as an area of visibility, a circular area of the maze 
that is illuminated by the hero’s torch (Figure 2).  There are four 
sub-modules in this group, one for each of the four difficulty 
settings: Super Easy, Easy, Medium and Difficult.  Projects 
related to this module would be applicable in an introductory 
programming course, since the impact the game play is noticeable 
with very small modifications to the code. 

LabyrinthGUI 

Properties File InstructionsPanel 

GameOverPanel 

FinishedGamePanel 

FinishedLevelPanel 

OpeningSplashPanal 

GamePanel 

Difficulty 
modules 

Moving 
monster 
modules 

Movement 

Listener 
createMaze 

117



 
Figure 2.  Game play at medium difficulty level. 

Monster movement modules 

The monster movement modules deal with various aspects of the 
behavior of the monster.  This set of modules is in charge of 
choosing a direction for the monster, choosing an image for the 
monster, moving the monster, checking if the character can hear 
the monster, and checking if the character has been caught by the 
monster.  Each of these tasks is implemented in its own module, 
with the entire set collaborating to control all aspects of the 
monster’s movement.  The logic implemented in these modules is 
the principle “brain” behind the game, enabling the monster to 
chase the hero character through the maze (Figure 3).  These 
modules would be suited to projects in an artificial intelligence 
class, providing opportunities to implement a variety of concepts 
from game theory. 

 
Figure 3.  Game play showing approach of monster. (close up) 

MovementListener module 

The MovementListener module is responsible for character 
movement in response to player keystrokes.  It maps the arrow 
keys to movement and direction on the game playing screen.  
Projects related to this module demonstrate fundamental use of 

listeners in Java, which would provide suitable material for an 
introductory programming or user interface design course. 

2.2 Modifying Modules 
The process of implementing a customized version of one of the 
game modules is straightforward, and is explained extensively in 
the bundled programmer’s guide.  The first step involves a code 
review to gain an understanding of the functionality provided by 
the module.  Because modules range in size from a few lines to a 
few hundred lines of code, there is a module appropriate to any 
level of learning.  Once the module interface is understood, the 
second step is to reimplement, or modify, the module to provide 
the desired new capability, taking care to continue to provide the 
same basic functionality.  Code modification can either be done 
directly on the original module source code (i.e., commenting out 
the original code), or sub classing the module, overriding methods 
where needed.  The third and final step is to recompile and test 
the new module. 

To demonstrate the ease with which module functionality can be 
modified, the following example is given from the commonly and 
easily overridden SetEasyDifficulty sub-module.  In order to 
replace or extend the functionality, the original code is first 
examined.  Here is the original code from the sub-module for 
setting the easiest level of game play difficulty: 

public void setEasyDifficulty() 

{ 

 monster_speed = monster_speed_easy; 

 monster_timer.setDelay(monster_speed); 

 searchlight = searchlight_easy; 

} 

If, for example, game play in the new version of the game was 
found to be too easy at the easiest level, and a new level of 
difficulty was added, the modified code would look like this: 
public void setEasyDifficulty() 

{ 

 //monster_speed = monster_speed_easy; 

 monster_speed = monster_speed_less_easy; 

 monster_timer.setDelay(monster_speed); 

 //searchlight = searchlight_easy; 

 searchlight = searchlight_less_easy; 

} 

Replacing the graphical images used in the game, such as the hero 
and monster characters, can be done quite simply as well.  In 
order to replace the images used, the user must first create new 
images by using a graphics drawing program.  Once the new 
images have been made, the user edits the text-based properties 
file, replacing the file paths of the old images with those of the 
new images.  Once the properties file is resaved, the game will 
access the new images instead of the old ones. 
Modifying the GUI of the game must be done through the code 
modification, which requires some familiarity with Java AWT 
and Swing programming.  The code for the GUI is located in the 
LabyrinthGUI module.  The student can change the overall GUI 
look and feel, menu layout and functionality by modifying a small 
amount of AWT or Swing code.  Changes to the GUI of 

118



individual game play and settings screens is similarly 
accomplished by making code modifications in one of the Screen 
modules. 
There are a variety of tools that work quite well for modification 
of modules.  Among the more commonly used tools are Microsoft 
Paint (microsoft.com) for editing images, or any of a large 
number of commercial or freely available and downloadable 
image editing tools such as PaintShopPro (jasc.com) or GIMP 
(gimp.org).  For source code editing, basic text editors (i.e., 
Notepad or Wordpad) can be used, as well as freely downloadable 
Java programming software such as Eclipse (eclipse.org) or 
JCreator (jcreator.com).  Labyrinth was programmed using 
JCreator, and a JCreator project is distributed with the source 
code. 
Due to the computational requirements of the game graphics and 
movement, it is recommended that the processor speed be at least 
1GHz with 256MB of RAM, so that the game can run smoothly. 

3. CLASSROOM APPLICATIONS 
Labyrinth is designed to be used in just about any computer 
science course to motivate learning exercises in many topics.  
This section describes a variety of applications for which 
Labyrinth is designed, with example uses of the framework within 
a typical sampling of computer science courses. 

3.1 Artificial Intelligence 
The monster that roams the maze in the game is an autonomous 
entity, controlled solely by the game program.  Thus, the monster 
exhibits a degree of artificial intelligence, albeit rather limited.  A 
class could learn and experiment with artificial intelligence by 
replacing the modules that deal with the monster’s movement.  
There is ample opportunity for exploring more sophisticated 
approaches to the monster’s “intelligence,” such as improving 
how it navigates the maze, identifies dead-ends in the maze, 
tracks the movement of the hero, and remembers where it has 
been. 

3.2 Computer Game Design 
Obviously, a course in computer game design will expose 
students to a variety of theories, techniques and approaches.  
Labyrinth can be used as an open-source base upon which a more 
sophisticated game could be built, or individual functionality can 
be examined and re-used in brand new games.  Quite often the 
goals of a computer game design course require students to 
implement a “new” game, so the strength of Labyrinth may be in 
providing less experienced students with a concrete example of a 
Java-based game that could reasonably be implemented in a 
single semester, given a solid effort.  Alternately, Labyrinth could 
be used to illustrate game programming techniques, to learn about 
both good and bad approaches, as there are certain to be examples 
of both in this (or any other) computer game program. 

3.3 Data Structures 
The Labyrinth game makes use of many different types of data 
structures, including some suited specifically to game play.  With 
the data structures component of a course, Labyrinth could be 
used to motivate students to explore practical uses of data 
structures and to illustrate the importance of careful data structure 
design.  The framework also enables a study of the more 

advanced data structures required in a real-world application of 
the sort that may be outside the scope of a textbook that focuses 
on fundamental issues.  Practical experience in designing and 
implementing data structures can be motivated by the fun and 
immediate feedback provided by game programming. 

3.4 Algorithms 
The majority of the modules in Labyrinth use very basic 
algorithms to implement the desired functionality.  Since 
algorithm classes usually include coverage of applicable 
algorithms, Labyrinth could be use as a framework for engaging, 
hands-on experimentation with the theoretical topics covered in 
class.  Students also could be challenged to design and implement 
their own algorithmic solutions within an appropriate module.  
The source code that is provided can be used to demonstrate 
practical application of algorithms discussed in class without 
additional implementation.  For example, the CreateMaze module 
that is included illustrates a depth first search algorithm while 
generating a new maze in a straightforward and concrete way. 

3.5 Software Engineering 
Because the process of software development can require more 
time and effort than are available in a single semester, software 
engineering courses wrestle with providing enough active-
learning opportunities to appreciate the many process-oriented 
concepts covered in class.  The Labyrinth framework could be 
used to enable focused software engineering exercise, enabling 
students to design and implement specific modules or extensions 
to the existing framework rather than undertaking the complete 
development of an entire game system.  This targeted approach to 
software engineering can expose students to common, real-world 
challenges such as supporting and modifying OPC (Other 
People’s Code), designing new functionality that must mesh with 
an existing system, and collaborating with others in making a 
variety of cooperating modifications to such an existing system. 

3.6 Java Programming 
Because Labyrinth is implemented purely in Java, it provides an 
engaging starting point for exploration of any level of Java 
programming.  Examination of the code can provide clear 
examples of how interactivity can be accomplished in a user 
interface, how threads can be used to enable concurrency, and a 
wide variety of examples drawn from the range of problems a 
Java programmer must solve.  Labyrinth can provide a good, 
running start for a larger-scale project in a more advanced course, 
or opportunities for an introductory level Java course to get fun 
and immediate feedback using minimal programming. 

3.7 Introductory Computer Science 
Introductory computer science courses for the general student 
population (i.e., CS0 courses) provide challenges to the instructor 
when programming projects are desired.  Because many students 
may have never written a computer program, and may never do so 
again, finding simple projects that can motivate students is 
difficult.  Labyrinth can provide a gentle introduction to Java at 
an introductory level by offering the interactivity of a computer 
game with the immediate feedback that comes with changing a 
small part.  The scope of Labyrinth was purposely kept reasonable 

119



so that a student with limited programming experience could still 
understand it. 

3.8 Interdisciplinary Courses 
One of our major goals with designing Labyrinth, and with 
keeping the overall architecture straightforward and easily 
understandable, was to foster interdisciplinary education.  In an 
interdisciplinary computer game design course, students from 
many majors and with a variety of backgrounds could collaborate 
on the design of the game.  Since most college students have 
experience with computer games, most will have creative ideas 
about the design of a game.  However, since most will not have 
the technical expertise to implement their ideas, an 
interdisciplinary approach must include some students who do 
have programming experience.  Game design teams could work 
much as they do at commercial game design companies.  For 
example, English and Communications majors could create plot 
and story-line, Art and Design students could create graphics and 
an overall look-and-feel, Business majors could analyze the game 
design and provide input on the marketability of the idea, and 
Computer Science students could provide the technical know-how 
to implement the game itself.  Of course, all team members would 
benefit from being exposed to both the creative team approach 
and to the computer science needed to make the creative ideas 
into a concrete finished product.  Although such a course could be 
difficult to design and manage, we believe that there is enough 
depth in a variety of game design aspects to provide any student 
with a valuable and significant degree of learning. 

4. EVALUATION 
A preliminary evaluation of Labyrinth was conducted in a series 
of independent, hands-on experiments with five students of 
varying backgrounds and ability levels.  Students were provided 
with source code, executable game and a programmer’s manual, 
and brief instruction on customizing, compiling and running the 
game suitable to their background.  Experienced computer science 
students had no difficulties making selected modifications to the 
source code, recompiling and running.  Comments included that 
the system “makes it easy to just change the behavior of the 
monster” or “this reminded me how well the design practices we 
are taught actually work!”  Less experienced students focused on 
changing graphical elements using a basic paint program, and 
noted “it was fun to just create a few images and have a whole 
new game” and “I never realized I could work on computer game 
design without being a programmer geek.  The initial results of 
this limited evaluation indicated to us that the goal of a multi-
tiered game design framework is worth pursuing further. 

5. CONCLUSIONS & FUTURE WORK 
It is possible to include elements of computer game programming 
in just about any computer science course.  Introductory level 
programming can be taught by leading students through minor 
modifications to existing, simple and well-organized Java code.  
More advanced students can reimplement entire modules and 
incorporate new features or better algorithms.  Interdisciplinary 
courses can foster team-based learning, drawing from each 
student’s area of expertise to design a customized game.  Projects 
similar to the development of Labyrinth can make excellent 
software engineering or capstone projects, and can lead to 

continued learning beyond the end of formal coursework.  
Labyrinth already has been used to create humorous and fun 
versions, although these games have so far been restricted to a 
maze-running, arcade-style format.  Nevertheless, the framework 
provides a useful teaching tool for holding the interest of all levels 
of students. 

Our hope has been that the Labyrinth framework would enable 
any college student interested in game design to try their hand at 
this very popular computer science discipline, and our preliminary 
evaluation supports this.  Future plans for this research include 
and deployment in a variety of  projects within computer science 
classes (subject to agreeable colleagues), creation of a “project 
notebook” that will be a collection of actual and proposed 
programming projects suitable for a variety of courses, and a 
serious evaluation of Game Maker (www.gamemaker.nl), which 
has undergone significant, recent development and is gaining 
acceptance for introductory game design in high school and 
college courses.  Although we are proud of the Labyrinth 
framework, the realities of building and maintaining a robust 
game design education software tool may require use of an 
appropriately priced, easy-to-use, third party tool such as Game 
Maker. 

6. REFERENCES 
[1] ALICE interactive 3-D graphics programming software, 

downloadable at: http://www.alice.org, 2005. 
[2] K. Becker.  Teaching with games: the minesweeper and 

asteroids experience. The Journal of Computing in Small 
Colleges, 17(2):23-33, 2001. 

[3] GameDev.net, online resource for computer game 
developers.  Web site accessed at: http://www.gamedev.net, 
Aug. 2005. 

[4] Gamelet toolkit, downloadable game development software 
at: http://java.internet.com/gamelet, 2005. 

[5] M. Gumhold and M. Weber.  Motivating CS students with 
game programming.  6th International Conference on New 
Educational Environments (ICNEE), Neuchatel, Switzerland.  
2004. 

[6] R. M. Jones.  Design and implementation of computer 
games: a captone course for undergraduate computer science 
education.  SIGCSE Technical Symposium on Computer 
Science Education, pp. 260-264. ACM Press, 2000. 

[7] S. Jones. Let the game begin-gaming technology and 
entertainment among college students.  2003.  Retrieved 
Aug. 2005 from http://www.pewinternet.org. 

[8] I. Parberry, T. Roden and M. B. Kazemzadeh.  Experience 
with an industry-driven capstone course on game 
programming. ACM SIGCSE Bulletin, 37(1):91-95, 2005. 

[9] I. Somerville.  Software Engineering.  Addison-Wesley, 7th 
edition, 2004. 

[10] T. Way.  A company-based framework for a software 
engineering course.  SIGCSE Technical Symposium on 
Computer Science Education, pp. 132-136. ACM Press, 
2005. 

 
 

120


