
Experience with an Industry-Driven
Capstone Course on Game Programming

[Extended Abstract]

Ian Parberry
Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

ian@unt.edu

Timothy Roden
Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

roden@cs.unt.edu

Max B. Kazemzadeh
School of Visual Arts

University of North Texas
Denton, TX, USA

maxk@unt.edu

ABSTRACT
Game programming classes have been offered at the Univer-
sity of North Texas continuously since 1993. The classes are
project based, and feature collaborative coursework with art
majors in UNT’s School of Visual Arts. We discuss the de-
sign that enables them to simultaneously provide both train-
ing for students intending employment in the game industry,
and a capstone experience for general computer science un-
dergraduates.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and Education-
Computer and Information Science Education[Computer sci-
ence Education]

General Terms
Design, Experimentation, Measurement

Keywords
Game programming, capstone, undergraduate education

1. INTRODUCTION
In 1993 we introduced a game programming course to the

undergraduate computer science program at the University
of North Texas. At the time, this was a controversial, much-
challenged, and difficult move. There were no course mate-
rials, books, or web pages available. Interestingly, the only
objections were from faculty — both the students and the
administration were in favor of the class. During the first few
years the class was offered, objections were raised about the
industry-driven focus of the class and the perceived trivial
nature of entertainment computing. Since 1993 the initial
game programming class has evolved with the fast-moving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/05/0002...$5.00.

game industry, and spawned a second, advanced game pro-
gramming class. After more than a decade of operation,
our game programming classes have positioned our alumni
for employment in companies including Acclaim Entertain-
ment, Ensemble Studios, Gathering of Developers, Glass
Eye, iMagic Online, Ion Storm, Klear Games, NStorm, Ori-
gin, Paradigm Entertainment, Ritual, Sony Entertainment,
Terminal Reality, and Timegate Studios.

Game programming classes are now gaining acceptance
in academia (see, for example, Feldman [6], Moser [10],
Adams [1], Faltin [5], Jones [8], Becker [3], Alphonce and
Ventura [2], and Sindre, Line, and Valv̊ag [13]), resulting
in a proliferation of new classes and programs nationwide,
and a move towards a professionally recommended curricu-
lum in game studies [7]. In contrast to institutions such
as Digipen, Full Sail, and SMU’s Guildhall that offer spe-
cialized degrees or diplomas in game programming, we offer
game programming as an option within a traditional com-
puter science curriculum. Keeping in mind that many insti-
tutions are starting game programs, and many of them are
designing their curricula in an ad hoc manner, the purpose
of this paper is to share some of what we have learned from
experience over the last decade by describing our game pro-
gramming classes, the design philosophy behind them, and
some of the potential pitfalls.

We begin by discussing game industry needs in Section 2,
and some important issues in the design of a game program-
ming class in Section 3. We will discuss the introductory
class in more detail in Section 4. Finally, in Section 5 we
examine the impact of game programming on the computer
science program at UNT.

2. WHAT GAME COMPANIES WANT
Game companies want C and C++ programmers with

general competence in technical subjects typically found in
an undergraduate computer science program such as pro-
gramming, computer architecture, algorithms, data struc-
tures, graphics, networking, artificial intelligence, software
engineering, and the prerequisite math and physics classes.
In addition, they usually demand evidence of the following
skills and experience:

1. Work on a large project, that is, larger than the typical
“write a program for a linked list” kind of programs
that are typically used as homeworks in programming
courses.

91

2. Creation of a game demo or two, something nontrivial
that plays well and showcases the programmer’s abil-
ity. This shows that the applicant is devoted enough
to have spent their own time to create something, and
the perseverance to see it through to completion.

3. That the applicant is a “team player”, somebody who
can work with other programmers, and just as impor-
tantly work with artists and other nontechnical people.

4. That the applicant can learn independently, because
the game industry continues to push the boundaries of
what can be done using new computer technology.

5. That the applicant is well-versed in game technology,
who the important development houses are, and what
they are currently reputed to be doing.

While our undergraduates can technically learn enough about
the game industry in general and game programming in par-
ticular from books to satisfy most of these requirements,
our game programming classes are designed to help students
achieve them more effectively than they could alone, and en-
courage them to higher levels of achievement. The require-
ments listed above are similar to the “Ideal Programmer
Qualities” listed by Marc Mencher [9]: self-starters, who
possess a team attitude, will follow-through on tasks, can
communicate with nonprogrammers, and take responsibil-
ity for what they have done.

In addition to satisfying the needs of aspiring game pro-
grammers, we quickly found that the game programming
classes are attractive to general students as a capstone ex-
perience, paralleling the experience of Jones [8]. Indeed, our
class projects meet most of the requirements of the capstone
project CS390 in [4]. Other employers are also attracted to
students who have experience with a group software project
with nontechnical partners. Feedback has suggested that
game demos created with artists tend to show better in in-
terviews than the typical project created by programming
students.

3. DESIGNING A GAME PROGRAMMING
CLASS

There are a number of key decisions in the design of a
game programming class that affect the outcome in a fun-
damental way:

1. Should the classes be theory based, or project based?
2. What software tools should be used?
3. Where do programming students find art assets?
4. Should students be free to design any game in any

genre, or should their choices be limited?
5. Should students write their own game engine, or work

with a pre-existing engine?

On the first question, the options were either a theory
class with homeworks and exams, perhaps augmented with
small programming projects, versus a project class in which
the grade is primarily for a large project programmed in
groups. We chose the project option, understanding that
students would come out of the classes with two substantial
game demos that will play a major role in their first job
interview in the game industry.

On the second question, the Computer Science depart-
ment at UNT was until recently almost exclusively Unix
based, with g++ being the compiler of choice and graphics

programming taught using OpenGL. We chose to use Win-
dows, Visual C++, and Microsoft DirectX instead, for two
reasons: for those students bound for the game industry it
makes sense to expose them to tools actually in use in a
significant segment of the industry, and for the rest, it is
advantageous to expose them to a different set of software
tools before graduation (both of which are encouraged in
Section 10.2.2 of [4]).

On the third question, that of art assets, the obvious
choice is to have students take advantage of the free art
on the web. Our experience is that students benefit sub-
stantially from working with art students. We will describe
more of our collaboration with the School of Visual Arts at
the University of North Texas in Section 4.

On the fourth question, on whether students should be
allowed to design and implement a game in any genre, our
experience is similar to that of Sindre, Line, and Valv̊ag [13].
Constraints on the type of game being created (as in [1, 2,
3, 5, 6, 8]) may seem attractive from a managerial point of
view because, for example:

• It allows for a more shared experience, enabling stu-
dents to learn and collaborate across group lines.

• It gives the flexibility to reassign group membership in
response to late drops and overheated group dynamics.

• It allows the art class to streamline their process by
using a pipeline art production line where necessary.

However, we have found that the element of creativity, stu-
dent morale, the quality of the resulting games, and the
outcomes all suffer when any kind of constraint is placed on
the game being developed.

On the fifth and final question, whether to teach with a
pre-existing game engine and tools or to have the students
create their own custom game engines, the pre-existing game
engine option may seem the most attractive at first for sev-
eral reasons:

• It allows the students to “stand on the shoulders of
giants”, that is, to achieve more than they can on their
own by leveraging existing code.

• It prepares them for the game industry, where they will
likely find themselves working on an existing engine,
or at least with an existing code base.

• It is easier for faculty to teach from an existing game
engine than to teach students to create their own game
engines.

However, we have found that the arguments for not using
a pre-existing game engine are more compelling in practice:

• Teaching students to use a single game engine simply
trains them in its use. The learning curve in a single
15-week class is typically so steep that they run the
risk of spending their time wrestling with code rather
than developing general skills.

• Existing game engines for educational use tend to be
poorly documented, low in features, and unstable. Stu-
dents find that they spend most of their time trying
to force a recalcitrant engine to do what they want it
to do, or coding around obscure bugs. They are often
resentful of the fact that their grade depends on some-
body else’s ability to write code, particularly when it
is obvious that “somebody else” writes bad code.

92

• The code for existing game engines is generally pro-
duction code, code that is designed to run fast and
be maintainable, rather than teaching code, which is
further designed to teach basic concepts.

• Students who write their own game engines get first-
hand experience with their internal workings, and are
thus able to more quickly pick up the details of the
proprietary game engine at their first job.

• Students entering the game industry will most likely
spend the majority of their professional lives modifying
and making additions to somebody else’s code. This
is the last opportunity that they will have to devote
major slices of their time on their own game engine.

For these reasons, we opted to teach game engine program-
ming with the class project being to create a game engine
using some standard utilities, rather than modifying a free
or proprietary game engine.

4. THE INTRODUCTORY GAME PROGRAM-
MING CLASS

The introductory game programming class was introduced
in 1993 as a special topics class. Despite some initial resis-
tance from faculty, it received its own course code CSCI 4050
and catalog entry in 1997, effective in Fall 1998. It is offered
once a year in Fall semesters.

CSCI 4050 started out in 1993 as a 2D game programming
class for DOS, changed to DirectX 3, and has been updated
annually to keep pace with each new release of DirectX, from
DirectX 5–9. Recently, elementary 3D techniques for a sim-
ple billboard game has been introduced to the curriculum.
CSCI 4050 is a project class. Students must attend lectures,
but the final grade is for a game programmed in teams. To
make this as real-world as possible, the students are given
an ill-defined objective, as recommended in Sections 10.3.2
and 10.4 of [4]. In the first class meeting, the students are
shown a slide that describes the grading system as follows:

A: it really knocks my socks off
B: it’s a pretty cool game
C: it’s an OK game
D: it’s not there, but at least you tried
F: you really blew it off, didn’t you?

Two kinds of points are awarded: completeness points and
techno points. Completeness points are awarded for things
such as:

• Does it run without crashing?
• Are there few (preferably no) bugs?
• Does it have an intro, a title screen, a credits screen,

a menu screen, help screens?
• Does it play with the keyboard, mouse, and/or joy-

stick?
• Does it have sound support?
• How is the game play? Is it fun?

Techno points are awarded for implementing technology not
covered in class. Examples include, but are not limited to:

• MP3 instead of WAV format sounds
• Showing video clips using DirectShow
• Lighting effects (eg. directional light, sunset, shadows,

lense flare)

• Pixel and vertex shaders
• Network play using TCP/UDP/DirectPlay

The students in CSCI 4050 are usually seniors in the com-
puter science program, who are technologically savvy and
experienced programmers. They are usually quite capa-
ble of reading the DirectX documentation themselves. For
them, the biggest road-block is picking the small subset of
techniques that they actually need from the wealth of op-
tions available. The lectures in CSCI 4050 focus on getting
started, and leave exploration of options in the more than
capable hands of the students.

The first author has developed a novel teaching technique
called incremental development. Rather than going through
the DirectX documentation in detail, we teach using a basic
game called Ned’s Turkey Farm, a simple side-scroller in
which the player pilots a biplane and shoots crows. The
aim is not to teach this game per se, but rather to teach
the development of games in general using this engine as an
example. It is designed to have many of the features of a
full game in prototype form so that students can, if they
wish, use code fragments from it as a foundation on which
to build their own enhancements. Earlier versions of the
code and lecture notes have been published in book form
(Parberry [11, 12]).

During lectures we have a laptop with 3D acceleration and
an overhead projector available in the classroom. The laptop
is set up as a game development platform, with Visual C++
and the DirectX SDK. It is important to be able to show
and manipulate the code in class, rather than just show a
pre-prepared slideshow. This hands-on attitude to the code
in class helps us avoid a disconnect between the code and the
lectures: in many classes the code and the lecture material
seem to have very little intersection.

The code is currently organized into a sequence of 11 de-
mos. Each demo is built on top of its predecessor. A file
difference application, such as windiff is used in class to
highlight the changes in code that must be made to add the
new features. An average of one demo is presented per week.
A typical class begins by running the demo and pointing out
the new features, followed by a powerpoint slideshow de-
scribing the new demo, its new features, the theory or prin-
ciples behind them, and any implementation details, but at
a high level without getting bogged down in the code. This
is followed by running windiff and going through the code
changes in more or less detail depending on the complexity
and difficulty of the code. Often, we run Visual C++ to
show students in real time the effects of minor code tweaks.

CSCI 4050 is taught in parallel with a game art class
taught to art students in the School of Visual Arts at UNT.
Part of the art students’ grade is to produce the art work
for a game programmed by the students in CSCI 4050. To
encourage group synergy we teach both the art and pro-
gramming classes at the same time in different rooms in the
same building. Classes run for 3 hours in the evening, and
the final hour is reserved for group meetings between the
artists and programmers. We have experimented with run-
ning the classes at different times, and at the same time in
different buildings, resulting in both cases in a massive drop-
off in meeting attendance, and a corresponding decrease in
the quality and number of completed games at the end of
the semester.

Allowing students to form their own groups based on com-
mon interests has proved to be the best way of maintaining

93

interest and excitement about the projects. At the end of
the first class we take the students in both classes — typ-
ically 30–35 programmers and 15–20 artists — into a large
classroom and have them stand up sequentially and intro-
duce themselves to the class, asking them specifically to talk
about what kind of games they like to play, what kind of
game they would like to create, and any prior experience.
We then allow them to wander around at random, and come
to the front of the room when they have formed a group of
two programmers with one artist. We have found that the
amount of artwork required by a simple sprite game is within
the ability of a single art student to create in a single class.
However, we always have one or two groups of odd sizes,
which are handled in a case-by-case manner.

The final projects in CSCI 4050 are presented to the in-
structor in a series of 30-minute slots over two days during
Finals week. They are graded on the final executable only,
the instructor does not look at source code. After demon-
strating the game and allowing the instructor to play, the
students are quizzed on their individual contributions to the
game, to ensure that they actually did what they claimed
to have done. Grading on the executable only is a radical
departure from other classes that the students have taken in
the computer science curriculum, but is an important real-
world constraint.

Starting in the Fall 2002, we instituted a game contest for
students in CSCI 4050 and the associated game art class.
Entry is strictly optional, and does not contribute to grades.
The contest is judged by a panel of 4 or 5 local representa-
tives from the game industry. Prizes are donated by Texas
game and publishing industries, ranging from the more ex-
pensive books and games to less expensive T-shirts and
posters. The contest lasts 2–3 hours, and is open to the
general public.

Holding the contest in the final week of classes, approxi-
mately one week before the deadline for turn-in of the final
projects, encourages students to start coding early. Previ-
ous attempts at getting students to get started early were
focussed on checkpoints and documentation. Preliminary
progress reports and play testing dates proved to be posi-
tive up to a certain point, after which insistence on more
checkpoints and documentation took up valuable time that
could more profitably be spent creating the actual game.
The game contest is a much more positive way of reinforc-
ing the final deadline.

Our proximity to the DFW metroplex with its high den-
sity of game development companies makes it easy to attract
guest lecturers. We encourage visits by teams from develop-
ment houses including artists, programmers, and designers,
and have them speak to the combined class of artists and
programmers. Rather than technical presentations, we have
guest lecturers speak about what it is like to work in the
game industry, what it takes to get their first job, and what
educational paths the students should pursue. Typically, we
have two or three presentations per semester.

5. ENROLMENT TRENDS
We believe that the game programming classes at UNT

have had a significant effect on student enrolment and reten-
tion. Student numbers are currently dropping in computer
science and engineering programs nationwide, which is mir-
rored at UNT (see Figure 1). Figure 2 shows enrollment
figures for the introductory and advanced game program-

 0
 100
 200
 300
 400
 500
 600
 700
 800

 1997 1998 1999 2000 2001 2002 2003

S
tu

de
nt

s

Year

BA+BS Total

Figure 1: Total enrollments in BA and BS degrees
in CSE, 1997-2003.

 0

 20

 40

 60

 80

 100

 1994 1996 1998 2000 2002 2004

S
tu

de
nt

s

Year

Intro
Advanced
Graduates

Figure 2: Game class enrollment versus number of
CSE Bachelor’s degrees awarded. Degrees are listed
by academic year, for example, the 2003 figure lists
graduation in Fall 2002, Spring 2003, and Summer
2003.

ming classes from Fall 1997 to Spring 2004 compared to the
total number of Bachelor’s degrees awarded by the Depart-
ment of Computer Science and Engineering. The introduc-
tory class was capped at 35 students in 2002. We see that a
substantial fraction — between one-third and one-half – of
departmental graduates have taken the introductory game
programming class.

Table 1 shows the results of a survey of students in the
undergraduate computer science and engineering programs
at UNT in Fall 2003. A total of 197 students were polled in
three classes, the two-course freshman-year C++ program-
ming sequence CSCI 1110, CSCI 1120, and the junior-year
Data Structures prerequisite to the intro game program-
ming course, CSCI 3400. Despite the total absence of an
advertising budget, 79% of students had heard of the game
programming classes, and about half of those had heard of
them before coming to UNT. We can see future demand for
game programming classes, e.g. that 49% of students polled
intend to take the intro game programming class, and a fur-
ther 32% say that they may take it. We can also see the
effect on the makeup of the undergraduate population, e.g.
it was a factor in choosing UNT for 37% of them.

94

Response 1110 1120 3400 Total
When did you hear about the game programming classes?
Before coming to UNT 47% 40% 27% 41%
While at UNT 33% 33% 55% 38%
Only during survey 20% 26% 16% 21%
Do you plan to take the intro game programming class?
Yes 50% 40% 59% 49%
Maybe 32% 35% 27% 32%
No 18% 25% 14% 19%
Did they influence your decision to come to UNT?
The only reason for choosing UNT 6% 4% 5% 5%
Major reason for choosing UNT 19% 12% 5% 14%
Minor reason for choosing UNT 13% 21% 27% 18%
No influence on choice of UNT 63% 63% 64% 63%
Number of respondents 96 57 44 197

Table 1: Responses to Fall 2003 survey. Columns list percentages for the two-course introductory C++
programming sequence CSCI 1110, CSCI 1120, and the Data Structures prerequisite to the intro game
programming course, CSCI 3400.

6. CONCLUSIONS
We have had great success over the last decade with a

two-course sequence in game programming in a traditional
computer science undergraduate curriculum. The classes
are project based, and feature collaborative work with art
students in the School of Visual Arts. In addition to train-
ing aspiring students for the game industry, the classes also
provide a capstone style project experience for all computer
science students.

Our experience with game industry involvement is that
while companies are, with a few notable exceptions, reluc-
tant to provide any sort of concrete support for game devel-
opment programs in academia, individuals are much more
positive. Requests for guest lecturers from industry almost
always results in great presentations from motivated, knowl-
edgable, and experienced game programmers and artists.

7. REFERENCES
[1] J. C. Adams. Chance-It: An object-oriented capstone

project for CS-1. In Proceedings of the 29th SIGCSE
Technical Symposium on Computer Science Education,
pages 10–14. ACM Press, 1998.

[2] C. Alphonce and P. Ventura. Object orientation in
CS1-CS2 by design. In Proceedings of the 7th Annual
Conference on Innovation and Technology in
Computer Science Education, pages 70–74. ACM
Press, 2002.

[3] K. Becker. Teaching with games: The minesweeper
and asteroids experience. The Journal of Computing
in Small Colleges, 17(2):23–33, 2001.

[4] Computing Curricula 2001: Computer Science.
Steelman draft, The Joint Task Force on Computing
Curricula, IEEE Computer Society, ACM, 2001.

[5] N. Faltin. Designing courseware on algorithms for
active learning with virtual board games. In
Proceedings of the 4th Annual Conference on
Innovation and Technology in Computer Science
Education, pages 135–138. ACM Press, 1999.

[6] T. J. Feldman and J. D. Zelenski. The quest for
excellence in designing CS1/CS2 assignments. In
Proceedings of the 27th SIGCSE Technical Symposium

on Computer Science Education, pages 319–323. ACM
Press, 1996.

[7] IGDA Curriculum Framework. Report Version 2.3
Beta, International Game Developer’s Association,
2003.

[8] R. M. Jones. Design and implementation of computer
games: A capstone course for undergraduate computer
science education. In Proceedings of the 31st SIGCSE
Technical Symposium on Computer Science Education,
pages 260–264. ACM Press, 2000.

[9] M. Mencher. Get in the Game! New Riders
Publishing, 2003.

[10] R. Moser. A fantasy adventure game as a learning
environment: Why learning to program is so difficult
and what can be done about it. In Proceedings of the
2nd Conference on Integrating Technology into
Computer Science Education, pages 114–116. ACM
Press, 1997.

[11] I. Parberry. Learn Computer Game Programming with
DirectX 7.0. Wordware Publishing, 2000.

[12] I. Parberry. Introduction to Computer Game
Programming with DirectX 8.0. Wordware Publishing,
2001.

[13] G. Sindre, S. Line, and O. V. Valv̊ag. Positive
experiences with an open project assignment in an
introductory programming course. In Proceedings of
the 25th International Conference on Software
Engineering, pages 608–613. ACM Press, 2003.

95

