
Rethinking Computer Science Education from a Test-first
Perspective

 Stephen H. Edwards
Virginia Tech, Dept. of Computer Science

660 McBryde Hall, Mail Stop 0106
Blacksburg, VA 24061 USA

+1 540 231 5723

edwards@cs.vt.edu

ABSTRACT
Despite our best efforts and intentions as educators, student
programmers continue to struggle in acquiring comprehension and
analysis skills. Students believe that once a program runs on sample
data, it is correct; most programming errors are reported by the
compiler; when a program misbehaves, shuffling statements and
tweaking expressions to see what happens is the best debugging
approach. This paper presents a new vision for computer science
education centered around the use of test-driven development in all
programming assignments, from the beginning of CS1. A key
element to the strategy is comprehensive, automated evaluation of
student work, in terms of correctness, the thoroughness and validity
of the student’s tests, and an automatic coding style assessment
performed using industrial-strength tools. By systematically
applying the strategy across the curriculum as part of a student’s
regular programming activities, and by providing rapid, concrete,
useful feedback that students find valuable, it is possible to induce a
cultural shift in how students behave.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.5 [Software Engineering]: Testing and
Debugging—testing tools.

General Terms
Verification.

Keywords
Pedagogy, test-driven development, laboratory-based teaching,
CS1, extreme programming.

1. INTRODUCTION
Many educational institutions are undergoing significant curriculum
changes as they embrace object orientation, often opting for an
aggressive objects-first strategy for its pedagogical value [25, 32,
26, 6]. Yet, while such changes offer the promise of eliminating the
paradigm shift that would face students who receive initial training
in procedural programming, other age old difficulties remain [28,

15]. Particularly during freshman and sophomore courses, and
occasionally much later, a student may believe that once the code
she has written compiles successfully, the errors are gone. If the
program runs correctly on the first few runs she tries, it must be
correct. If there is a problem, maybe by switching a few lines
around or tweaking the code by trial and error, it can be fixed. Once
it runs on the instructor-provided sample data, her program is
correct and the assignment is complete. Even worse, students are
often able to succeed at simpler CS1 and CS2 assignments without
developing a broader view, which only reinforces approaches that
will handicap their performance in more advanced courses.

The reason for this, as described by Buck and Stucki [9, 10], is that
most undergraduate curricula focus on developing program
application and synthesis skills (i.e., writing code), primarily
acquired through hands-on activities. In addition, students must
master basic comprehension and analysis skills [8]. Students must
be able to read and comprehend source code, envision how a
sequence of statements will behave, and predict how a change to the
code will result in a change in behavior. Students need explicit,
continually reinforced practice in hypothesizing about the behavior
of their programs and then experimentally verifying (or
invalidating) their hypotheses. Further, students need frequent,
useful, and immediate feedback about their performance, both in
forming hypotheses and in experimentally testing them.

To this end, I propose a new vision for laboratory and programming
assignments across the entire CS curriculum inspired by test-first
development [4, 3]. From the very first programming activities in
CS1, a student should be given the responsibility of demonstrating
the correctness of his or her own code. Such a student is expected
and required to submit test cases for this purpose along with the
code, and assessing student performance includes a meaningful
assessment of how correctly and thoroughly the tests conform to the
problem. The key to providing rapid, concrete, and immediate
feedback is an automated assessment tool to which students can
submit their code. Such a tool should do more than just give some
sort of “correctness” score for the student’s code. In addition, it
should:

• Assess the validity of the student’s tests, giving feedback about
which tests are incorrect.

• Assess the completeness of the student’s tests, giving an
indication of how to improve.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

148

• Assess the style of the student’s code, giving feedback about
where improvements can be made.

• Assess the quality of the student’s code, giving suggestions for
improvement or drawing attention to potential problems.

This paper describes a vision of a test-first-inspired educational
strategy: systematically supporting test-first programming from the
beginning to ensure students acquire the necessary comprehension
and analysis skills needed to support effective programming. It also
describes a practical, feasible approach to providing automated
feedback that students can really use. This approach will work even
for very early programming assignments in CS1 classes, and
naturally meshes with existing tools for teaching in an objects-first
style. By systematically adopting such an assessment approach
across the curriculum, it will be possible to induce a cultural shift in
how students behave when completing programming assignments
and what they expect to get out of the process.

Section 2 lays out the details of test-first assignments and their
assessment, while Section 3 uses this foundation to describe a new
vision for CS education. Related work is described in Section 4,
with conclusions appearing in Section 5.

2. TEST-FIRST ASSIGNMENTS
Others have suggested that more software engineering concepts in
general [29, 30] and software testing skills in particular [38, 20, 21,
22, 16] should be integrated across the undergraduate CS
curriculum. Providing upper-division elective courses on such
topics is helpful, but has little influence on the behaviors students
practice throughout their academic endeavors. Instead, a student
can easily view the software engineering practices in most student-
oriented texts as something that professional programmers do “out
in the real world” but that has little bearing on—and provides little
benefit for—the day-to-day tasks required of a student.
Practicing test-driven development (TDD) across the curriculum is
an interesting alternative. In TDD, one always writes a test case (or
more) before adding new code. New code is only written in
response to existing test cases that fail. By constantly running all
existing tests against a unit after each change, and always phrasing
operational definitions of desired behavior in terms of new test
cases, TDD promotes incremental development and gives a
programmer a great degree of confidence in the correctness of their
code. While TDD is a practical, concrete technique that students can
practice on their own assignments.
The idea of using TDD in the classroom is not revolutionary [2].
Instead, the real issue is how to overcome its potential pitfalls: the
approach must be systematically applied across the curriculum in a
way that makes it an inherent part of the programming activities in
which students participate, and students must receive frequent,
directed feedback on their performance that provides the student
with clear benefits. The key to resolving these issues is a powerful
strategy for assessing student performance.

2.1 Automated Grading
Providing appropriate feedback and assessment of student
performance is the critical factor in the success of this vision.
Instructors and teaching assistants are already overburdened with
work. Doubling their workload by requiring them to assess test data
as well as program code will never work. This issue is even more

critical for a curriculum-wide transformation. The only practical
answer is automation.
Many educators have used automated systems to assess and provide
rapid feedback on large volumes of student programming
assignments [19, 23, 31, 35, 18]. While these systems vary, they
typically focus on compilation and execution of student programs
against some form of instructor-provided test data. Indeed, Virginia
Tech uses its own automated grading system for student programs
and has seen powerful results.
In spite of its classroom utility, an automatic grading strategy like
the one embodied in the Curator also has a number of shortcomings.
Most importantly, students focus on output correctness first and
foremost; all other considerations are a distant second at best
(design, commenting, appropriate use of abstraction, testing one's
own code, etc.). This is due to the fact that the most immediate
feedback students receive is on output correctness, and also that the
Curator will assign a score of zero for submissions that do not
compile, do not produce output, or do not terminate. In addition,
students are not encouraged or rewarded for performing testing on
their own. In practice, students do less testing on their own, often
relying solely on instructor-provided sample data and the automated
grading system. Clearly, existing approaches to automatic grading
of student programs will not work.

2.2 TDD-oriented Assessment
Instead of automating an assessment approach that focuses on the
output of a student’s program, instead we must focus on what is
most valuable: the student’s testing performance. The assessment
approach should require a student test suite as part of every
submission, and encourage students to write thorough tests. It
should also support TDD by encouraging the rapid cycling of “write
a little test, write a little code.”
Virginia Tech has developed a prototype grading system to explore
the possibilities in this direction, and has experimented with these
techniques in the classroom with positive results. The prototype is a
service provided by Web-CAT, the Web-based Center for
Automated Testing.
Suppose a student is developing a programming assignment in Java.
The student can prepare test cases in JUnit format [24]. The source
files for the program and tests can be submitted to the Web-CAT
Grader. Upon receipt, the student’s submission is compiled and
then assessed along four dimensions: correctness, test completeness,
test validity, and code quality.
Assessing “correctness” is entirely the student’s responsibility, and
the percentage of student-written tests passed by the student’s code
is used for this measure. Student code is also instrumented to gather
code coverage instrumentation, using a tool such as Clover [14].
The instructor can choose an appropriate coverage metric for the
difficulty level of the course, and code coverage can be used as a
measure of how thoroughly the student as tested the submitted code.
Further, the instructor may wish to provide a separate reference test
set—the percentage of tests in this reference set that are passed by
the student submission can be used as an indicator of how
thoroughly the student has tested all the behavior required in the
problem.
Test validity is assessed by running the student tests against an
instructor-provided reference implementation. In cases where the
class design for the student’s submission is tightly constrained, this

149

may include unit-level test cases. As students move on to more
comprehensive assignments, the test cases can be partitioned into
those that test top-level program-wide behavior and those that test
purely internal concerns. Only top-level test cases that capture end-
to-end functionality are validated against the instructor’s reference
implementation.
Finally, industrial quality static analysis tools such as Checkstyle
[11] and PMD [34] can assess how well the student has conformed
to the local coding style conventions as well as spot potentially
error-prone coding issues. Together, Checkstyle and PMD provide
many dozens of fully automated checks for everything from
indentation, brace usage, and presence of JavaDoc comments to
flagging unused code, inappropriate object instantiations, and
inadvisable coding idioms like using assignment operators in sub-
expressions. The instructor has full control over which checks are
enabled, which checks result in scoring deductions, and more.
To support the rapid cycling between writing individual tests and
adding small pieces of code, the Web-CAT Grader will allow
unlimited submissions from students up until the assignment
deadline. Students can get feedback any time, as often as they wish.
However, their score is based in part on the tests they have written,
and their program performance is only assessed by the tests they
have written. As a result, to find out more about errors in their own
programs, it will be necessary for the student to write the test cases.
The feedback report will graphically highlight the portions of the
student code that are not tested so that the student can see how to
improve. Other coding or stylistic issues will also be graphically
highlighted.

2.3 But Can It Be Used Across the Board?
While the idea of automatically assessing TDD assignments is
exciting, it also raises questions when one proposes to apply it
curriculum-wide. The two biggest questions are: can beginning
students use it from the start of their first class, and will it work on
graphically-oriented programs?
First, consider beginning students. Most automated grading
systems, including the current system in use at Virginia Tech, were
designed to help cope with the large volumes of students in
introductory-level classes. The previous Curator system has been in
use in our CS1 course for many years and has not caused issues in
that regard. So the real question is whether or not students can write
test cases from the start of CS1.
Interestingly, DrJava [1], which is designed specifically as a
pedagogical tool for teaching introductory programming, provides
built-in support to help students write JUnit-style test cases for the
classes they write. Similarly, BlueJ [25, 26, 27], another
introductory Java environment designed specifically for teaching
CS1, also supports JUnit-style tests. BlueJ allows students to
interactively instantiate objects directly in the environment without
requiring a separate main program to be written. Messages can be
sent to such objects using pop-up menus. BlueJ’s JUnit support
allows students to “record” simple object creation and interaction
sequences as JUnit-style test cases. Such tools make it easy for
students to write tests from the beginning.
Further, the scoring formula used to grade introductory assignments
by beginners will most likely be different than that used for more
advanced students. To start, the instructor may wish to only require
method-level coverage of beginning students (i.e., each method is

executed at least once). As students grasp the concept and develop
experience applying the feedback they receive, grading stringency
can be gradually increased.
But will this technique work for graphically-oriented programs? As
long as a batch-oriented test execution scheme can be devised, the
solution is appropriate. Buck and Stucki describe a simple approach
for achieving the same end with graphically-oriented student
programs [9]. By fixing the interface between the GUI and the
underlying code, the GUI can be replaced by an alternate driver
during testing. Instructors who use custom GUI libraries designed
for educational use can augment them with additional support for
test automation if needed. We have successfully applied automated
grading techniques to a variety of courses from the freshman
through the junior level with success, including some courses that
use graphically-oriented projects.

import cs1705.*;

/**
 * MyRobot adds three basic capabilities to a
 * robot: the ability to turn right, turn com-
 * pletely around, and pick up a row of beepers.
 */
public class MyRobot
 extends VPIRobot
{
 //--
 /** Construct a new MyRobot object.
 */
 public MyRobot()
 {
 }

 public void turnRight()
 {
 turnLeft();
 turnLeft();
 turnLeft();
 }

 //--
 /** Reverse direction with a 180-degree turn
 */
 public void turnAround()
 {
 turnLeft();
 turnLeft();
 }

 //--
 /** March along a line of beepers, picking up
 * each in turn.
 */
 public void collectBeepers()
 {
 while (nextToABeeper());
 {
 pickBeeper();
 if (frontIsClear())
 {
 move();
 }
 }
 }
}

Figure 1. A simple student program.

150

2.4 An Example
To show how TDD assignments work, consider a case that pushes
the boundaries: a freshman in CS1 is learning the basics of
programming on a graphically oriented assignment. Many
institutions use variations of Karel the Robot because of the
consistent and intuitive metaphor it provides to introductory
students. There are several Java versions of Karel the Robot [5, 7,
10], some of which allow student to “program” Karel by writing
pure Java.
Karel is a simple mobile robot that navigates in a two-dimensional
grid-based world. Karel supports a simple set of messages to move
forward, detect walls directly in front of him, turn left, and pick up
or put down small beepers in his environment. Students can easily
grasp the concept of Karel as well as the basic operations he
provides, and their programs are easily animated in a graphical
window to visualize the robot’s actions.
Figure 1 shows the source code for a hypothetical Karel assignment:
create a robot that provides three new capabilities: turning right (the
base robot only knows how to turn left!), reversing direction, and
picking up a sequence of beepers. A student completing this
assignment may begin with a sample robot class in a text book or
provided by the instructor.
What kind of test case might a CS1 student write for this
assignment? Suppose the student is working on gathering beepers
first. Figure 2 shows a simple JUnit-style test case that might be
created as a student works on collectBeepers(). The student
might even create this sequence interactively and record it as a test
case using their educational IDE. The student could then submit
code and test case together for assessment. The student could
continue to develop test cases for each new feature or change, using
repeated submissions to get feedback on his or her progress.
Figure 3 depicts the feedback report the student would receive from
the Web-CAT Grader. This report is for a submission where all of
the student’s tests pass. It shows a summary of the correctness and
testing assessment, which in this example is taken from the Clover
code coverage measure—the number of methods executed in this
case, since students for this assignment are not yet ready for more
stringent requirements. The bar graphs in the report were inspired
in part by JUnit's GUI TestRunner: “when the bar is green the code
is clean.”
Figure 3 also shows a summary of the stylistic assessment, where
points have been deduced for stylistic or coding errors. There is
also room for a design and readability score from the TA or
instructor. In this example, the code has not yet been manually
assessed. Further, a more detailed breakdown lists each class in the
submission separately, showing the number of comments or remarks
on the corresponding source file, the points lost attributable to that
class, and a summary of how thoroughly that particular class has
been tested. By showing the basic testing coverage achieved for
each component in this way, the top-level summary indicates to the
student where more effort can be productively spent to improve
their understanding of the code and to ensure it operates correctly.
This list is initially sorted by the number of comments received,
although the student can resort the list using other criteria if desired.

The student can click on a class name to view the suggestions and
comments on that portion of his or her code. Figure 4 shows an
example screen shot of “marked up” source code that the student
will see. The basic form of the report is produced by Clover, and
each source file is viewble in pretty-printed form with color-
highlighted markup and embedded comments or remarks. This top-
level summary shows the basic testing coverage achieved for each
component, indicating to the student where more effort can be
productively spent to improve their understanding of the code and
ensure it operates correctly.
From this summary, individual reports for each file in the
submission can be obtained, as exemplified in Figure 4. Clover
automatically highlights lines that have not been executed during
testing in pink to graphically indicate where more testing needs to
be performed. In addition, an execution count for each line is listed
next to the line number on the left. Hovering the mouse over such
lines pops up more detailed information about the amount of full or
partial coverage achieved on troublesome lines.
In addition, comments from static checking tools (e.g., Checkstyle
and PMD) have been folded into this unified report. Lines
highlighted in red indicate stylistic or coding issues resulting in
point deductions. In Figure 4, line 18 is so marked, and the
corresponding message is shown immediately below the line, in this
case indicating that the method is missing a descriptive comment.
Alternate colors and icons are used to denote warnings, suggestions,
good comments from the TA or instructor, and extra credit items.

import cs1705.*;

public class MyRobotTests
 extends junit.framework.TestCase
{
 MyRobot karel;
 World world;

 protected void setUp()
 {
 // Read in a world config containing
 // a line of beepers at karl’s start loc
 World.startFromFile("beeperTest.kwld");
 karel = new MyRobot();
 world = karel.getWorldAsObject();
 }

 //--
 /** Check that after calling collectBeepers(),
 * there are no more beepers left.
 */
 public void testCollectBeepers()
 {
 karel.collectBeepers();
 karel.turnAround();
 karel.turnOff();
 karel.assertBeepersInBeeperBag();
 world.assertNoBeepersInWorld();
 }
}

Figure 2. A simple test case for MyRobot.

151

In Figure 4, line 40 is also highlighted as an error, with two
associated messages. The execution count next to the line number
indicates that lots of processing time was spent here—the accidental
infinite loop was terminated by the execution time limit imposed for
this assignment. The messages draw attention to the misplaced
semicolon, helping to solve the issue in this case.
The Web-CAT Grader also provides an interface for TAs to review
assignments. Using a direct manipulation interface, comments
resulting from manual grading can be directly entered via a web
browser. TA comments entered this way will be visible to the
student just as tool-generated comments.

2.5 How Are Students Affected?
TDD is attractive for use in education for many reasons. It is easier
for students to understand and relate to than more traditional testing
approaches. It promotes incremental development, promotes the
concept of always having a “running (if incomplete) version” of the
program on hand, and promotes early detection of errors introduced
by coding changes. It directly combats the “big bang” integration
problems that many students see when they begin to write larger
programs, when testing is saved until all the code writing is
complete. It increases a student’s confidence in the portion of the
code they have finished, and allows them to make changes and
additions with greater confidence because of continuous regression

testing. It increases the student’s understanding of the assignment
requirements, by forcing them to explore the gray areas in order to
completely test their own solution. It also provides a lively sense of
progress, because the student is always clearly aware of the growing
size of their test suite and how much of the required behavior is
already “in the bag” and verified.
Most importantly, students begin to see these benefits for
themselves after using TDD on just a few assignments. The Web-
CAT Grader prototype and TDD have been used in a junior-level
class. Compared to prior offerings of the class using a more
traditional automated grading approach, students using TDD are
more likely to complete assignments, are less likely to turn
assignments in late, and receive higher grades. Empirically, it also
appears that student programs are more thoroughly tested (in terms
of the branch coverage their test suites achieve on a reference
implementation) than when using the previous automated grading
system.

3. A NEW VISION FOR CS EDUCATION
Given the example in Section 2.4, it is clear that TDD-based
assignments with comprehensive, automated assessment are
feasible, even for introductory students. In addition, this strategy
can be combined easily with many recent advances in CS pedagogy.
Students can be taught using an objects-first style [5, 6, 12, 13, 37,

Figure 3. The score summary a student receives for a submission.

152

32], and introduced to programming using metaphorical systems
like Karel the Robot [7, 13, 37]. Role-playing activities [7] can be
used to introduce OO concepts and act out testing tasks. Closed
laboratory sessions can be used to provide more hands-on learning.
Pair programming can be used in closed labs to increase peer-to-
peer learning and also to foster comprehension and analysis skills
[33, 39]. Bloom’s taxonomy can be used to plan the order in which

topics are introduced and the manner in which programming tasks
are framed as students progress in their abilities [9, 10].
As students gain more skill from early courses, requirements for test
thoroughness can be increased. Unlike prior automated grading
systems that tend to inhibit student creativity and enforce strict
conformance to an unwavering assignment specification, the TDD
approach more readily allows open-ended assignments such as those

Figure 4. Style and coding suggestions for one student source file.

153

suggested by Roberts [36]. If a student wishes to do more work or
implement more features, they can still write their own internal
tests. As long as they also implement the minimum requirements
for the assignment as embodied in the instructor’s reference test
suite, their submission will be graded on the thoroughness of their
own testing against their enhanced solution.
After students have used TDD techniques across several classes, it
will become the cultural norm for behavior, not just an extra
requirement that one instructor imposes and that can be “thrown
away” after his or her class has been passed. The goal is to foster
this cultural shift for pedagogical ends. By continually requiring
students to test in the small, every time they add or change a piece
of code, they are also continually practicing and increasing their
skills at hypothesizing what the behavior should be and then
operationally testing those hypotheses. This will truly bring the
“laboratory” nature of computer science training to the fore if this
vision is adopted across an institution’s curriculum.

4. RELATED WORK
The vision described here builds on a large body of prior work.
Infusing software engineering issues and concerns across the
undergraduate curriculum has been discussed at SIGCSE on several
occasions [17, 29, 30]. TDD and other extreme programming ideas
have even been used in the classroom [2]. This idea is
complementary to the test-first assignment strategy described here.
The main difference is that the TDD strategy focuses on operational
techniques that provide clear benefits to students in a way that is
natural part of the programming process and that can be applied
across the curriculum.
The idea of including software testing activities across the
curriculum has also been proposed by others [16, 20]. Jones has
described some experiences in this direction [21, 22]. While Jones
has used a traditional automated grading system for assessing
student work [23], his system is similar to others in that it focuses on
assessing program correctness first and foremost. This paper
proposes TDD rather than more traditional testing techniques and
focuses specifically on the unique assessment issues necessary for
fostering a positive cultural change in student behavior.
Automated grading has also been discussed in the educational
literature [19, 35, 18]. Unfortunately, most such systems are of the
“home brew” variety and see little or no use outside their originating
institution. Further, virtually all focus on output correctness as the
sole assessment criterion. Mengel describes experiments in using
metrics-based techniques to assess style [31]. Here, the intent is to
use of industrially proven tools. By installing and configuring these
tools on a server and combining them with a unified feedback
format, students can readily take advantage of the information they
provide without being exposed to the hassles of installing and
learning to use the tools.

5. CONCLUSION
Despite the best efforts of computer science educators, CS students
often do not acquire the desired analytical skills that they need to be
successful until later than we would like, if at all. Reassessing
typical computer science education practices from a test-first
perspective leads one to focus on programming activities and how
they are carried out. It is possible to infuse continual practice and
development of comprehension and analysis skills across the
programming assignments in a typical CS curriculum using TDD

activities. Providing a system for rapid assessment of student work,
including both the code and the tests they write, and ensuring
concrete, useful, and timely feedback, is critical. In addition to
assessing student performance, students can get real benefits from
using the approach, and these benefits are important for students to
internalize and use the approach being advocated.
Using TDD across the board can serve as the core for a broader
vision of re-engineering programming practices across the CS
curriculum. The goal is to develop a culture where students are
expected to test their own code (that is, apply analytical and code
understanding skills on a daily basis), and where it is an accepted
part of life across all of a student's courses. Instead of being the
exception—i.e., testing is something students do in one class
focused on the topic—testing one's own code will become the norm.
As students become inculcated with this expectation, it is possible to
emphasize testing across the curriculum as a natural part of existing
classes, without requiring extra class time or lecture materials. The
hope captured in this vision is that students will acquire better skills
for a variety of programming tasks, that instructors and TAs will be
able to devote more attention to design assessment (because simple
stylistic, correctness, and testing issues are automatically assessed),
and thus more teaching time and effort can go into the deeper issues
that all students must master once they conquer their programming
fundamentals.

6. ACKNOWLEDGMENTS
This work is supported in part by the Virginia Tech Institute for
Distance and Distributed Learning and by the National Science
Foundation under grant DUE-0127225. Any opinions, conclusions
or recommendations expressed in this paper are those of the author
and do not necessarily reflect the views of the NSF. I wish to
acknowledge the feedback provided by Manuel Pérez-Quiñones on
these ideas, and the students who have worked on the project: Anuj
Shah, Amit Kulkarni, and Gaurav Bhandari.

7. REFERENCES
[1] Allen, E., Cartwright, R., and Stoler, B. DrJava: a lightweight

pedagogic environment for Java. In Proc. 33rd SIGCSE
Technical Symp. Computer Science Education, ACM, 2002,
pp. 137-141.

[2] Allen, E., Cartwright, R., and Reis, C. Production
programming in the classroom. In Proc. 34th SIGCSE
Technical Symp. Computer Science Education, ACM, 2003,
pp. 89-93.

[3] Beck, K. Aim, fire (test-first coding). IEEE Software, 18(5):
87-89, Sept./Oct. 2001.

[4] Beck, K. Test-Driven Development: By Example. Addison-
Wesley, Boston, MA. 2003.

[5] Becker, B.W. Teaching CS1 with Karel the Robot in Java. In
Proc. 32nd SIGCSE Technical Symp. Computer Science
Education, ACM, 2001, pp. 50-54.

[6] Bergin, J., et al. Resources for next generation introductory CS
courses: report of the ITiCSE’99 working group on resources
for the next generation CS 1 course. ACM SIGCSE Bulletin,
31(4): 101-105.

[7] Bergin, J., Stehlik, M., Roberts, J., Pattis, R. Karel J. Robot: A
Gentle Introduction to the Art of Object-Oriented
Programming in Java.
http://csis.pace.edu/~bergin/KarelJava2ed/

154

[8] Bloom, B.S., et al. Taxonomy of Educational Objectives:
Handbook I: Cognitive Domain. Longmans, Green and Co.,
1956.

[9] Buck, D., and Stucki, D.J. Design early considered harmful:
graduated exposure to complexity and structure based on levels
of cognitive development. In Proc. 31st SIGCSE Technical
Symp. Computer Science Education, ACM, 2000, pp. 75-79.

[10] Buck, D., and Stucki, D.J. JKarelRobot: a case study in
supporting levels of cognitive development in the computer
science curriculum. In Proc. 32nd SIGCSE Technical Symp.
Computer Science Education, ACM, 2001, pp. 16-20.

[11] Checkstyle home page. http://checkstyle.sourceforge.net/.
[12] Comer, J., and Roggio, R. Teaching a Java-based CS1 course

in an academically-diverse environment. In Proc. 33rd
SIGCSE Technical Symp. Computer Science Education, ACM,
2002, pp. 142-146.

[13] Cooper, S., Dann, W., and Pausch, R. Teaching objects-first in
introductory computer science. In Proc. 34th SIGCSE
Technical Symp. Computer Science Education, ACM, 2003,
pp. 191-195.

[14] Clover: a code coverage tool for Java.
http://www.thecortex.net/clover/.

[15] Decker, R. and Hirshfield, S. The top 10 reasons why object-
oriented programming can’t be taught in CS 1. In Proc. 25th
Annual SIGCSE Symp. Computer Science Education, ACM,
1994, pp. 51-55.

[16] Goldwasser, M.H. A gimmick to integrate software testing
throughout the curriculum. . In Proc. 33rd SIGCSE Technical
Symp. Computer Science Education, ACM, 2002, pp. 271-275.

[17] Hilburn, T.B., and Towhidnejad, M. Software quality: A
curriculum postscript? In Proc. 31st SIGCSE Technical Symp.
Computer Science Education, ACM, 2000, pp. 167-171.

[18] Isong, J. Developing an automated program checker. J.
Computing in Small Colleges, 16(3): 218-224.

[19] Jackson, D., and Usher, M. Grading student programs using
ASSYST. In Proc. 28th SIGCSE Technical Symp. Computer
Science Education, ACM, 1997, pp. 335-339.

[20] Jones, E.L. Software testing in the computer science
curriculum—a holistic approach. In Proc. Australasian
Computing Education Conf., ACM, 2000, pp. 153-157.

[21] Jones, E.L. Integrating testing into the curriculum—arsenic in
small doses. In Proc. 32nd SIGCSE Technical Symp. Computer
Science Education, ACM, 2001, pp. 337-341.

[22] Jones, E.L. An experiential approach to incorporating software
testing into the computer science curriculum. In Proc. 2001
Frontiers in Education Conf. (FiE 2001), 2001, pp. F3D7-
F3D11.

[23] Jones, E.L. Grading student programs—a software testing
approach. J. Computing in Small Colleges, 16(2): 185-192.

[24] JUnit home page. http://www.junit.org/.
[25] Kölling, M. and Rosenberg, J. Guidelines for teaching object

orientation with Java. In Proc. 6th Annual Conf. Innovation
and Technology in Computer Science Education, ACM, 2001,
pp. 33-36.

[26] Kölling, M. and Rosenberg, J. BlueJ—the hitchhiker’s guide
to object orientation. Maersk Mc-Kinney Moller Institute for
Production Technology, Univ. Southern Denmark, Tech.
Report 2002, No. 2, ISSN No. 1601-4219.
http://www.mip.sdu.dk/~mik/papers/hitch-hiker.pdf.

[27] Kölling, M. BlueJ—The Interactive Java Environment.
http://www.bluej.org/.

[28] Krause, K.L. Computer science in the Air Force Academy
core curriculum. In Proc.13th SIGCSE Technical Symp.
Computer Science Education, ACM, 1982, pp. 144-146.

[29] McCauley, R., Archer, C., Dale, N., Mili, R., Robergé, J., and
Taylor, H. The effective integration of the software
engineering principles throughout the undergraduate computer
science curriculum. In Proc. 26th SIGCSE Technical Symp.
Computer Science Education, ACM, 1995, pp. 364-365.

[30] McCauley, R., Dale, N., Hilburn, T., Mengel, S., and Murrill,
B.W. The assimilation of software engineering into the
undergraduate computer science curriculum. In Proc. 31st
SIGCSE Technical Symp. Computer Science Education, ACM,
2000, pp. 423-424.

[31] Mengel, S.A., Yerramilli, V. A case study of the static
analysis of the quality of novice student programs. In Proc.
30th SIGCSE Technical Symp. Computer Science Education,
ACM, 1999, pp. 78-82.

[32] Mitchell, W. A paradigm shift to OOP has occurred …
implementation to follow. J. Computing in Small Colleges,
16(2): 95-106.

[33] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,
Miller, C., and Balik, S. Improving the CS1 experience with
pair programming. In Proc. 34th SIGCSE Technical Symp.
Computer Science Education, ACM, 2003, pp. 359-362.

[34] PMD home page. http://pmd.sourceforge.net/.
[35] Reek, K.A. A software infrastructure to support introductory

computer science courses. In Proc. 27th SIGCSE Technical
Symp. Computer Science Education, ACM, 1996, pp. 125-129.

[36] Roberts, E. Strategies for encouraging individual achievement
in introductory computer science courses. In Proc. 31st
SIGCSE Technical Symp. Computer Science Education,
ACM, 2000, pp. 295-299

[37] Sanders, D., and Dorn, B. Jeroo: a tool for introducing object-
oriented programming. In Proc. 34th SIGCSE Technical Symp.
Computer Science Education, ACM, 2003, pp. 201-204.

[38] Shepard, T., Lamb, M., and Kelly, D. More testing should be
taught. Communications of the ACM, 44(6): 103–108, June
2001.

[39] Williams, L., Upchurch, R.L. In support of student pair-
programming. In Proc. 32nd SIGCSE Technical Symp.
Computer Science Education, ACM, 2001, pp. 327-331.

155

