
COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4 17

W
hile the phrase “new
economy” doesn’t
hold the same
promise that it did

for the dot-commers a couple
years ago, we all still recognize
that information technology
has become the
backbone of the
world’s economy. The
National Science Foun-
dation’s Information
Technology Research pro-
gram was developed in
response to the President’s
Information Technology Advi-
sory Committee (PITAC) [6]
report which said as much. Even
in the down-turned economy,
there are still huge numbers of IT
jobs going unfilled.

Of course, none of this is news
for those of us in the trenches
teaching computer science. Our
enrollments are bulging at the
seams. We can’t get enough fac-
ulty to cover the loads.

Despite those enormous enroll-
ments, there are lots of indications
that we’re not doing enough, or
not doing the right things, to
meet the demand for a diverse,
well-educated, large work force of
computer science professionals.

Start asking around—we’re hear-
ing about dropout/failure rates in
CS1 courses in the 15%–30%
range. A report in the ACM

SIGCSE Bulletin from a working
group at ITICSE 2001 found
shockingly low performance on
simple programming problems,

even among second-year, college-
level students at four schools in
three different countries [5].
(These results echo our research
from 15 years ago, so it’s not clear
we ever have figured out how to
teach programming.) The Ameri-
can Association for University
Women’s report, Tech-Savvy: Edu-
cating Girls in the Computer Age
[1] points out that large numbers
of women drop out or simply fail
to enroll in computer science
courses because they perceive
these courses to be overly techni-
cal, with little room for individual
creativity

Why are we doing such a poor
job at getting and keeping stu-
dents in computer science? Here’s
our suggestion: Computer science
educators are using an outdated
view of computing and students.
We teach computer science in
much the same way as we learned
it. We got excited about computer
science while learning about lay-
ing out complex patterns of
abstract decisions and computa-
tions, manipulating invisible data
structures, and finally perhaps
printing a number or a phrase.
These activities matched the avail-
able computing hardware: The

Teaching the Nintendo
Generation to Program

TE
R

R
Y

M
IU

R
A

Mark Guzdial and
Elliot Soloway

Preparing a new strategy for teaching introductory
computer programming.

Log on Education

18 April 2002/Vol. 45, No. 4 COMMUNICATIONS OF THE ACM

punched card, teletype, and gen-
erally text-focused I/O devices.
Printing “Hello, World!” was
interactive computing when most
of us were learning to program.
And we didn’t get a lot of com-
puter science majors in those
days, either.

But, computing is much differ-
ent today. The hardware enables
us to do much more. In what fol-
lows, we propose a new strategy
for teaching introductory com-
puter programming we believe will
attract a group of students not
excited by the invisible, abstract,
and text world we grew up with.

Engaging Students
Learning scientists have found
over and over again that engaging
the students is critical to deep
learning. Sure, you can get stu-
dents to memorize just about any-
thing, but if you want them to
understand it, you have to get
them to think about it. Engaging
students is critical for them to
learn something well enough to
use it again in a new situation.

College students today have
been called the “Nintendo genera-
tion” or the “MTV generation.”
Their perception of technology
and media has been profoundly
influenced by these sources. The
implication has often been that
they need to consume mass quan-
tities of fast-paced sound, graph-
ics, and animation. Perhaps there’s
a more critical implication—that
these are the kinds of media that
Nintendo generation students
want to produce when learning
computer science.

Let’s consider a popular text-
book for CS1 today, Deitel and

Deitel’s Java: How to Program
[2]. We’re not picking on it but
using it as an example. Most
CS1 textbooks are fairly similar
in terms of their exercises. The
first program discussed in Deitel
and Deitel is producing a line of
text, akin to “Hello, World.”
The second places the text in a
window. The next few produce
numeric outputs in windows and
then input numbers and gener-
ate calculator types of responses.
Would one expect these kinds of
exercises to be the ones to
engage the MTV generation?
Such exercises are exactly what
the AAUW report describes as
“tedious and dull.”

It’s About Media
Today’s desktop computers were
invented to be multimedia com-
position and exploration devices.
The Xerox PARC Learning
Research Group believed in a
vision of the computer as a Dyn-
abook: A tool for learning,
through creation and exploration
of a wide range of media. Pursu-
ing that vision is what led them
to invent the desktop user inter-
face as part of their programming
language, Smalltalk. Alan Kay
and Adele Goldberg spelled out
their vision of the Dynabook in a
1977 article, “Personal Dynamic
Media,” that talked about stu-
dents building music, animation,
and drawing systems—learning
to program through the creation
of media and learning to pro-
gram in order to create media.
Creating media sounds like what
the Nintendo Generation is look-
ing for.

In a lot of ways, that 1977

vision looks even more futuristic
today than it did then. Kay and
Goldberg describe animations,
music synthesis, and drawing tools
that resemble what we have today,
but their media were created by
students as they were learning to
program. The established practice
of having students focus on pro-
ducing text and the occasional
graphical user interface widget is
well entrenched today. Who
teaches CS1 by having students
build animated horse races? Kay
and Goldberg did 25 years ago.
Ironically, there are fewer techni-
cal barriers to kids programming
media today than there were in
1977. Computers today have mag-
nitudes more zorch. High-resolu-
tion displays supporting millions
of colors and sound cards with
CD-quality recording and play-
back facilities are the default com-
puting platforms offered at such
stores as Best Buy and Radio
Shack.

One reason for not introducing
programming via multimedia
construction is the lack of a good
multimedia programming plat-
form. Java is the most popular
CS1 programming language
today, but the Java 2 Media
Framework is complex and isn’t
completely ported to all operating
system platforms. Other popular
CS1 languages like C++, Scheme,
and Python offer little support for
multimedia, and certainly not for
all hardware and operating system
configurations. This lack of sup-
port for multimedia might be due
to the perception that multimedia
programming is an advanced
topic, something that CS1 stu-
dents might one day aspire. No

Log on Education

t
n

o

COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4 19

one does multimedia first.
But, if the platform does sup-

port multimedia—as does Alan
Kay et al.’s Squeak—multimedia
programming can fit in well
within the scope of a CS1 course.
Indeed, the code for creating
graphical transitions, for doing
cell animations, even for synthe-
sizing sounds is not all that com-
plicated. We have been using the
programming language Squeak for
three years at Georgia Tech with
over 100 students per semester
[3]. Squeak (www.squeak.org) is a
cross-platform multimedia envi-
ronment that is the evolution of
Smalltalk toward the Dynabook,
championed by Alan Kay, Dan

Ingalls, and a large open source
community. Students at Georgia
Tech use Squeak to build MPEG
movie editors, personalized news-
papers built on harvested Web
content, math equation layout
editors, and 3D adventure games.
Admittedly, we’re not yet in
CS1—ours is a sophomore
requirement. But it’s through our
use of Squeak and watching stu-
dents rise to the challenge of mul-
timedia programming that we
came to the realization that multi-
media-first is a viable way to
introduce computing.

Example: Sound Synthesis
Last year, we ran a pilot class on
computer music implementation
for a dozen undergraduates so we

could see what a multimedia-first
approach might look like. The
easiest way to start with com-
puter music is to record oneself
(Squeak provides a built-in,
cross-platform digital recorder),
save (name) the sound, and play
it back—even at a different pitch,
so the sound becomes an instru-
ment. This is exactly the
approach of modern sampling
keyboards. The musical equiva-
lent to “Hello, World!” in the
domain of computer music is (in
Squeak) (SampledSound sound-
Named: ‘mySound’) play. To use
our recorded sound as an instru-
ment is a simple extension:
((SampledSound soundNamed:

‘mySound’) pitch: ‘c’) play.
We can go further down this

path by using our sound to play
recorded MIDI files. But let’s take
a different path to explore some
(slightly) more complex algo-
rithms. We’ll use as an example
the creation of sounds via additive
synthesis. Additive synthesis is an
old technique for sound synthesis
(pre-dates Yamaha synthesizers)
which doesn’t generate musical
sounds. It has the advantage,
though, of being understandable
and allowing the users to generate
different kinds of sounds with not
very much code.

Additive synthesis works by
summing sine waves at different
frequencies to create new kinds of
sounds. The simplest way to do

additive synthesis is the way that
it was invented on early hardware:
By stuffing numbers into a buffer
and sending the buffer to a digi-
tal-to-audio converter. A Squeak
routine (method) for generating a
sound buffer with a given fre-
quency, amplitude (roughly, vol-
ume), and duration requires no
more than a simple loop and cal-
culation. The problem requires
some trigonometry, but nothing
too complex.

forFreq: freq amplitude: amp
duration: seconds
“Generate a monophonic Sound-
Buffer (array) filled with a sine
wave of the given frequency (freq),
maximum amplitude (amp), and
duration in seconds (seconds)”

| sr anArray pi interval samples-
PerCycle maxCycle rawSample |
sr := SoundPlayer samplingRate.
“The Sampling Rate”
anArray:= SoundBuffer

newMonoSampleCount:
(sr * seconds). “The
array for the sound”

pi := Float pi. “The constant Pi”
interval := 1 / freq. “Time

between cycles,
inverse of frequency: sec-
onds per cycle”

samplesPerCycle := interval * sr.
“secs/cycle * samples/sec-
ond = samples per cycle”

maxCycle := 2 * pi. “Maximum
radians per cycle”

1 to: (sr * seconds) do: [:sampleIndex |
rawSample := ((sampleIndex/

samples PerCycle) * max-
Cycle) sin. “Compute
a sound sample value”
anArray at: sampleIndex

Kids can produce their kind of media using
today’s technology. In fact, they want to. And
they’ll learn programming doing it.

put: (rawSample *
amp) rounded.

“Insert the sam-
ple into the sound at
the right amplitude”

].
^ anArray

One doesn’t need to under-
stand anything about Squeak to
see that this is 10 lines of code
with a single “for” loop in it. To
add these sine waves together one
simply adds the values from the
sound buffers with the same
index values, like this:

combine: soundbuffer1 and:
soundbuffer2“Add two Sound-
Buffers (arrays) together”

| newsound |
(soundbuffer1 size) = (sound
buffer2 size)

ifFalse: [^self error: ‘Sound
buffers must be of the
same length’].

newsound := SoundBuffer
newMonoSampleCount: (sound

buffer1 size). “The resultant
sound”

1 to: (soundbuffer1 size) do:
[:index |

“Add up each of the sam-
ples”

newsound at: index put:
(soundbuffer1 at: index)

+ (soundbuffer2 at: index)].
^newsound.

Six lines of code, and we now
have an additive sound synthe-
sizer by calling these methods
with appropriate parameters.
Based on our experience, we

believe that Nintendo generation
students will prefer learning
about array manipulation where
the example results in producing
sound as opposed to sorting pay-
roll IDs or doing linear searches
for student names.

In Squeak, we cannot only gen-
erate sounds using these 16 lines
of code, but we can also look at
the waveforms, play the newly cre-
ated sounds, and even do Fourier
analyses on them. In our com-
puter music course, we even used

Squeak to create the lecture notes,
where we build sounds, listen to
them, and analyze them from
within a Web browser (see the fig-
ure).

Squeak has even more sophisti-
cated multimedia aspects in its
base distribution, like FM synthe-
sis and wavelets support, so better
(more musical, more sophisti-
cated, more interesting) computer
music is available, too. Thus,
along the multimedia spectrum of
computer music, it’s possible to
span the easy concepts of “Hello,
World!” through introduction to
programming up to serious pro-
gramming—while engaging a set
of students who are turned off by

the text-first view of program-
ming that we emphasize today.

Back to the Future
We have used “Hello, World!” for
the past 25 years because text was
the medium that was easiest to
manipulate with the given tech-
nology. Today’s technology can
manipulate sound, graphics, and
video with the same responsive-
ness and ease. Today’s technology
produces the media that “kids
these days” are consuming. These

same kids can produce their kind
of media using today’s technology.
In fact, they want to. And they’ll
learn programming to do it.

We are sympathetic to the com-
plexities of really making this
“multimedia-first” approach work.
We readily admit that neither the
University of Michigan nor Geor-
gia Institute of Technology are
currently following a “multimedia-
first” approach in our instantia-
tions of CS1. But, if we want to
attract and keep the MTV/Nin-
tendo generation students sitting
in our classes, we must reach out
and use their media, use their
modes of expression. Interestingly
enough, in so doing we cannot

20 April 2002/Vol. 45, No. 4 COMMUNICATIONS OF THE ACM

Reviewing
computer music

lecture notes
from within a

browser, using
wave editors to

explore the
sounds.

Log on Education

only teach all the “old concepts”
but we can also have our students
use modern ideas such as Fourier
transforms. And, in using their
media we are tacitly saying: we
value you and your ideas. Students
won’t miss that gesture. Indeed,
they will reciprocate and value
more what we are trying to teach
them. In so doing, we will provide
alternative paths into computer
science for students who might
have turned away from the “Hello,
World!” view of computing.

References
1. AAUW. Tech-savvy: Educating girls in the

new computer age. American Association of
University Women Education Foundation,
New York, 2000.

2. Deitel, H.M. and Deitel, P.J. Java: How to
Program. Prentice-Hall, Upper Saddle River,
NJ, 1999.

3. Guzdial, M. Squeak: Object-Oriented Design
with Multimedia Applications. Prentice-Hall,
Englewood, NJ, 2001.

4. Kay, A. and Goldberg, A. Personal dynamic
media. IEEE Computer (Mar. 1977), 31–41.

5. McCracken, M., Almstrum, V., Diaz, D.,
Guzdial, M., Hagan, D., Kolikant, Y.B.-D.,
Laxer, C., Thomas, L., Utting, I., and Wilusz,
T. A multinational, multiinstitutional study of
assessment of programming skills of first-year
CS students. ACM SIGCSE Bulletin 33, 4
(2001), 125–140.

6. PITAC. Information technology research:
Investing in our future. President’s Informa-
tion Technology Advisory Committee, 1999;
www.ccic.gov/ac/report.

Mark Guzdial (guzdial@cc.gatech.edu)
is an associate professor in the College of
Computing at the Georgia Institute of
Technology.
Elliot Soloway (Soloway@umich.edu) is
a professor in the College of Engineering, School
of Information, and School of Education at the
University of Michigan.

© 2002 ACM 0002-0782/02/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2002/Vol. 45, No. 4 21

Coming Next Month in

Communications
The Adaptive Web
The May issue will spotlight adaptive
Web-based systems—the next generation
in user-adaptive software systems.
Adaptive systems have the capability to
adapt their behavior, often using
intelligent technologies for user modeling
and adaptation to the goals, tasks, and
interests of users or groups of users.

The articles will feature adaptive
interfaces, animated agents, personalization
techniques, and privacy concerns. The
areas of application include e-commerce,
Web-based education, job banks, and
online health information.

Also in May:
Strategies for Transitioning Old Economy

Firms to E-Business
Controlled Publication of Digital Scientific

Data

Managing with Web-based IT in Mind
Are Intelligent E-Commerce Agents

Partners or Predators?

