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Figure 1: The phases of information placement from left to right. First a corpus of existing player traces from play testing is used to calculate
surface information value and local densities, then information artifacts are placed in areas of desired information value, and finally new
players interact in the new environments observing and utilizing new information elements to the desired effect.

Abstract

The correct placement of important artifacts and information in in-
teractive three-dimensional (3D) environments is important to en-
sure that those key artifacts and information are seen and absorbed
by the immersed user. This can include training information, ad-
vertisements, clues, interaction points, and other information that
needs to be conveyed to or manipulated by the user. We propose
a novel algorithm for calculating the optimal positioning of such
artifacts and information based on a corpus of prior play testers,
which are used to determine distance-weighted and radially focused
observation densities on surfaces of interactive 3D environments.
We have developed a tool called HIIVVE (Highly Interactive In-
formation Value Visualization and Evaluation) which allows for in-
teractive evaluation as well as offline processing of the information
value surfaces. A user study involving information placement using
the calculated information value surfaces and observation densities
shows that higher valued locations do yield improved user observa-
tion by as much as 58.3%.
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1 Introduction

The proper location of key artifacts and information in interactive
environments is important to increase the likelihood that the user
will see this information. Specifically in a very large world, it is
imperative to put information in a place where users will be able to

find it easily. Usually this is done subjectively by the designer of
the world. But this is not always the optimal solution since different
users will explore the environment in many different ways. We pro-
pose an objective algorithm for calculating the optimal positioning
of such artifacts and information.

This work can benefit several fields including education, advertis-
ing, art asset generation and level design. For example, if a com-
pany is developing a high-budget game and is spending heavily on
art assets they want to ensure that all of those expensive assets are
viewed by the players. This algorithm will help direct effort into
key areas of these 3D interactive environments and reduce unnec-
essary effort in areas not normally seen. Used in playtesting for
prototypes, this work may assist in developing these interactive en-
vironments by allowing the developers to correlate their intention
with actual play.

In-game advertising is another key application of this technology.
As discussed in [Hong 2005], in-game advertising is a growing field
which is expected to be very important to the video game industry in
the future. However, currently the advertisements are being placed
purely subjectively by the level designers. This algorithm can be
used for placing advertisements where players are more likely to
see them, maximizing the impact of advertising and even creat-
ing distinction between premium, regular, and budget advertising
space.

Using a 3D interactive visualization tool we created, called HIIVVE
(Highly Interactive Information Value Visualization and Evalua-
tion), and interaction data from any 3D first or third-person interac-
tive experience, we can calculate the observation density and over-
all surface information value for all of the surfaces in the environ-
ment. We start with a set of player traces, which is collected interac-



tion data that includes position, orientation, and elapsed time. This
information is represented in a 3D visualization along with all of
the static geometry for that environment (e.g., buildings, walls, and
so forth). Using these player traces from various players in the en-
vironment, we can project a distance-weighted view frustum from
the dynamic viewpoint of the player to the static surfaces of the
world geometry. Using a distance squared weight, the view frus-
tum projection upon each surface can be collected in an additive
fashion. This creates an observation density map for each surface.
A summation over the entire surface yields the overall information
value of that surface. Ordering the surfaces by the most viewed
would then reveal the optimal surfaces for information placement
from the surface information value.

Context is key [Coutaz et al. 2005] and we are tied to the context of
our data. The original player traces used to calculate the informa-
tion value surfaces were obtained using the Urban Combat Testbed
given a specific start and goal location plus world geometry (to-
gether which provide a specific context for the UCT game). The
location of the start and the goal greatly influence the player search
task. Therefore, the optimality of a surface is within the context of
the scenario for which it was calculated.

Once we acquired the optimal surfaces for an environment we con-
ducted a study to determine whether the surfaces are indeed the
optimal ones. We created five scenarios with three posters placed
in varying levels of information value. We had human players play
a single level and then tell us which posters they remembered see-
ing in the environment. We then compare the average information
retention between these five test groups.

This paper first discusses relevant related work, establishes the
problem of where to place key information artifacts in an interac-
tive 3D environment, and explains the method of calculating the
information value for the surfaces. We then explain the method-
ology and algorithm in great detail. Once we have explained our
methodology, we discuss the results of our user study.

2 Related Work

Locations of seen points based on the field-of-view of users in-
teracting in 3D virtual environments taking into account distance,
time of gaze, and radial focus drop-off have previously been studied
[Chittaro et al. 2006]. However, these evaluations were conducted
in 2D and did not take into account full calculations for object and
surface occlusion. In general, their work is more focused on user
spatial flow as the traversed and interacted in the environment. Our
work takes into account time, distance, and radial focus but explores
and includes full 3D fidelity, environments of complex geometry,
and full object and surface occlusion.

In a study that was conducted to find the optimal navigation tech-
nique in a complex 3D environment [Suma et al. 2007], one of the
metrics measured was whether the subjects remembered the objects
that were in the environment. This evaluation is similar to ours,
but the focus was not on the placement of the objects but rather
how the navigation technique used affected the user’s memory of
objects. The study asked users to navigate the environment using
different navigation techniques (real walking, move where point-
ing and move where looking) and take a few tests afterwards. The
tests asked the users to identify the objects they saw from a list,
write down the objects they saw from memory and also to place
the objects from a list onto a map. The Suma ef al. study was
based on evaluating control modalities and not information place-
ment, but the mental evaluation was similar. In that study it was
observed that the various navigational techniques did not aid in re-
membering objects. If the information value of the surfaces in the
environment had been calculated a priori from previous trials, the

objects could have been placed in areas that were most visible to the
users. In doing so, they could emphasize the differences in object
memory based on the navigation techniques themselves knowing
that the objects were placed in the areas of the highest probability
of observation.

Various metrics for exploring way-finding in an interactive 3D vir-
tual environment, including player movement and orientation, in-
volving field-of-view perception and memory have been studied
[Ruddle and Lessels 2006]. Ruddle and Lessels conducted a study
to evaluate how users navigate a virtual environment. The users
were given the task of finding targets placed in the environment.
The field-of-view of the subjects was used to classify the errors
made while searching for the targets. They found that most of
the missed targets were in the users field-of-view but were just not
noticed—even with a wide field-of-view. We have also observed
the same phenomenon, supporting that users in 3D interactive envi-
ronments may not fully observe their surroundings.

3 Problem Statement

The major problem that we are trying to overcome answers the fol-
lowing question: How do we know where to place information ar-
tifacts in games? The most obvious solution is to let the level de-
signers subjectively place these artifacts where they think the player
might see them. This is not always the best solution however. Since
no two players will explore an environment in exactly the same
way it is important to place these artifacts objectively, especially if
they could be placed more effectively by some proven, repeatable
method. For example, in Tomb Raider Legend (published by Eidos
Interactive) the clues and key interaction points are often placed in
locations that are very hard to find for the average player. If they
could somehow analyze the data from various play testers to see
where they explored the most, it would make it apparent what the
easiest to find location for the artifacts would be. However, the
game designer may not always want to put the artifacts in the eas-
iest to find location. They might also want to put it somewhere in
the median value areas that are neither the easiest nor the hardest to
find.

Our approach provides an objective solution to this problem. Given
the time-varying playtest data from various users, the algorithm will
provide the designer with a list of all of the surfaces in the environ-
ment in order of information value. So, if they wanted to place the
artifact on or near the highest information value surfaces they can
look at the top of the list, for a median value location they can look
in the middle of the list, and so forth.

This work seeks to prove the following hypothesis:

Using prior observation under a specific context to determine sur-

face observation densities and derived information values of all
game surfaces, this data can be used to guide the placement of
new information artifacts in accordance with desired observation
results under the same context.

4 Discovering the Value of Information

The value of information refers to the likelihood that the user will
observe a piece of information that is placed on a particular surface.
Discovering the value of information requires that we have interac-
tion data for the environment in question. The interaction data must
include position and orientation of the user over time. We also need
data from as many users as possible in order to get a good represen-
tation of an average user exploring the environment. The following
sections will explain the process in more detail.



Figure 2: An example view frustum showing one ray intersection.

4.1 Information from Observation

Using a collection of interaction data for an environment we can
calculate the observation density for each and every surface in the
environment, as shown in Algorithm 2. This is done by calculat-
ing the intersection between the user’s view frustums (the view-
extended area of sight in a 3D environment, geometrically shaped
like a square-based pyramid) and the surface, and updating the val-
ues on the surface where it is intersected. Once we have determined
this value we know that the surface with the highest observation
density is the optimal surface for information placement in the en-
vironment based on the source user population. We also know the
exact location on the surface that has the highest observation den-
sity by coloring the texture on the surface wherever there is an in-
tersection. Each surface in the environment is assigned a 2D texture
of its own, the size of which is determined by a minimal bounding
quad around the surface.

We have a few main constants that are defined before the algorithm
is executed as shown in Figure 2,. The max distance is the distance
between the viewpoint of the player and the centroid on the frus-
tum’s base. The half-angle of the frustum (i.e., the frustum angle
from the surface-orthogonal center of the pyramid to the outer edge
as shown in Figure 2) determines the size of the projection of the
frustum onto the surface under evaluation. Note that currently we
only use square-based frustums for simplification. These two vari-
ables are constant for each execution of the algorithm. In order to
find the intersection between the view frustum and the surfaces we
project a ray from the viewpoint to every point on the base of the
view frustum at a specified interval. When there is an intersection
with a ray and a surface, we calculate the texture coordinate at that
point and update the value accordingly.
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We show the equation for calculating the observation density for a
single intersection point ¢ in Equation 1. Where V44 is the max-
imum total value for the point, d is the distance of the point from
the user and r is the distance from the center of the view frustum
projection on the surface to the point on the base where the ray is
being projected. Refer to Figure 2 for an image that shows both d
and r in context.

Figure 3: Urban Combat Testbed.

4.2 Targeted Environments

For this research, we utilize the player traces [Youngblood 2002]
collected from the Urban Combat Testbed (UCT) project [Holder
et al. 2007; Youngblood and Holder 2004; Cook et al. 2007; Young-



blood et al. 2006]. The Urban Combat Testbed is a first-person
shooter game based on the Quake 3 engine. In Figure 3 you can see
a screenshot of the Urban Combat Testbed. The primary objective
for the player in UCT is to find and defuse an Improvised Explosive
Device (IED) placed somewhere in the environment. UCT records
the player as they play the map and try to find the goal. We have
over 400 player traces from a previous study that can be used to
calculate the observation density. This provides us with an initial
dataset for testing our algorithm.

Although UCT was used in this case, this algorithm is applicable
to any 3D first or third-person interactive environment. The only
requirement is that it must be able to save the interaction data for
the user and it must generate an XML file for the geometry which
contains all of the relevant static surfaces in the environment. This
XML file can generally be produced from any polyhedron-based
3D environment by the UCT Common Toolset [Holder et al. 2007;
Cook et al. 2007; Youngblood et al. 2006]. Both of these files are
in a well defined format which makes it relatively easy to output
them from any game even if not using the UCT Common Toolset.
UCT and the UCT Common Toolset will be publicly released on
www.urban-combat.net in the Summer of 2007.
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Figure 4: HIIVVE tool interaction interface with player trace
loaded and surface information value densities illustrated.

4.3 HIIVVE

The Highly Interactive Information Value Visualization and Evalu-
ation tool (HIIVVE) is built using C++. The graphics rendering is
done using OpenGL and the user interface is created in FLTK (Fast
and Light ToolKit). A screenshot of HIIVVE is shown in Figure 4.
The user can adjust the max distance and the half-angle of the view
frustums with a slider bar. The sorted surfaces list-box provides a
list of all of the surfaces in order of information value once the Cal-
culate button has been pressed. Rendering the lighting, XYZ axes,
and the view frustums can be toggled with buttons. Due to the li-
braries used by the tool it is cross-platform and can run on Mac OS
X, Linux, and Windows. We plan to also make this tool publicly
available in the Summer of 2007.

4.4 Methodology

The algorithm for calculating the intersection with one frustum is
shown in Algorithm 1. The information value for a surface is found

by calculating the sum of all observation densities for the entire sur-
face. The observation density metric is determined by calculating
the intersection of a view frustum and the surface polygon. A ray is
projected from the eye point to each point on the base of the frustum
projection on the surface. We then check to see if any polygons are
intersecting that ray. We only update the closest intersection point
to the viewpoint to cull out occluded surface intersections.

Algorithm 1 Compute Individual Frustrum Effect

Find baseSize of frustum base using the frustumAngle
Find the centroid of the base
Find the topLe ft and bottom Right corner points of the base
for i = 0 to baseSize do
for j = 0 to baseSize do
Find the current base Point to shoot a ray to using ¢ and j
Reset best Point to NULL
Calculate ray from eye Point to base Point
for all sur faces in the environment do
Calculate intersectionPoint on sur face by the ray
if intersection Point is closer than the best Point then
if intersection Point has not yet been updated then
best Point = intersectionPoint
end if
end if
end for
if intersection found then
d = distance of best Point from eye Point
r = distance between centroid of base and base Point
value = Vipae I d*xd) /T
Update texture value at the best Point by value
end if
end for
end for

This algorithm has an efficiency of O(n-m) where n is the number
of viewpoints and m is the number of surfaces. Although we are
culling the viewpoints that are inside buildings, it can still take a
long time to run the algorithm. Figure 5 shows a graph of the run-
times for the algorithm with a varying number of viewpoints. The
number of surfaces was a constant 258 since we used the same map.

B000

7000

G000

G000

4000

Tine {seconds)

3000

2000

1000

0 500 1000 1500 2000 2500 3000 3500

Processed Vieupoints

Figure 5: Running time for the algorithm with varying number of
viewpoints

As seen in Algorithm 2, we are processing each player’s viewpoints
as a view frustum and calculating the intersection with each of the
surfaces. We are also storing an updated flag for each point on the



surface’s texture to make sure that we don’t update the same texture
more than once per frustum.

Algorithm 2 Cycle through player sample population

for all players do
for all viewpoints in the player’s path do
if viewpoint is inside an object then
skip this viewpoint
end if
Calculate Individual Frustum Effect for viewpoint
Clear the update status of all surfaces
end for
end for
Clear intersected surface list
for all sur faces in environment do
insert the sur face into list, sorted by total value
end for

5 Experimentation and Results

In order to verify our algorithm, we conducted a study using one
of the levels from the Urban Combat Testbed (Level 1 Scenario
3). We selected three posters to place in the UCT environment and
conducted an IRB approved human trial study to test whether the
users observed the posters in the environment.

Figure 6: Location of information elements placed within the UCT
test environment based upon previous player traces and calculated
surface information value.

We ran the value of information algorithm on the level to deter-
mine the total observation density on all of the surfaces based on
32 previously recorded player traces for that level. When doing
the calculation of information value, the view frustum distance was
set to 175, the half-angle of the frustum was set to 0.085 radians,
and Ve, was set to 100, 000. We then determined the surfaces in
the low, low quarter, median, high quarter and high range for in-
formation value. Five UCT scenarios were then created, each with

the same three posters placed on the appropriate surfaces. Figure 6
shows the placement of the three posters for each of the five levels.
Users of varying experience with first person shooters were asked
to play one level in the Urban Combat Testbed. Each participant
was assigned one of the five levels at random and told that they
must find and defuse the IED and that they have a time limit of five
minutes. Once they finished the level, they were given a short post-
test. The post-test asked them to circle the images they remember
seeing in the environment, or if they did not see any they can circle
”NONE”. A screenshot of some of the posters in the UCT environ-
ment is shown in Figure 7. Note that users were not instructed to
look for specific information elements in the environments—their
focused task was to defuse the IED.
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Figure 7: Wall-mounted posters in the UCT environment. Fruit
poster in the foreground and Army poster in the background, both
are circled.

The number of posters that were seen by the users in each of the
five levels is shown in Figure 8. This was measured by loading
the recorded player traces of the participants and determining if
the posters were ever within their view frustum. If we look at the
number of posters that were visible to the participants based on
their recorded player trace, we can see a pattern based on the level
played. For instance, the players that played in the high value level
always saw at least two of the posters, and the players in the lower-
quarter value level saw almost none of the posters. In the median
value level, there was an even distribution between the number of
posters seen. However, there is an uneven distribution for the low
value level because of the current low sample size', which is eight
participants per scenario for a total of 40 participants. According
to the current study results, 75.0% of the information was seen in
the high value scenario with a standard deviation of 15.4%. In the
high-quarter scenario, 37.5% of the information was viewed with a
standard deviation of 21.3%. The median level also had 37.5% of
the information viewed and the standard deviation was 33.0%. The
low-quarter level had the lowest amount of information viewed at
16.67%, with a standard deviation of 17.8%. Finally, the low level
had 33.3% of the information viewed with a standard deviation of
35.6%. The higher curve for the low level is due to an outlier as
seen in Figure 10. Subject 32 uncharacteristically was drawn to
the posters and led a path through the environment that led them
to view all three posters. However, despite clearly observing the
posters they only remembered seeing one of them.

I'This study is still being continued as the paper is written with a target
population of 150 participants—30 in each scenario.
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Figure 8: Actual Viewed Information from Viewport Examination
after Interactive Session.

After they played the level we asked them to fill out a simple post-
test that asked which of the posters they remember seeing. Figure
9 shows how many correct posters the participants said they had
seen. We found that a majority of the participants did not remem-
ber seeing the posters. However, when we analyzed their player
trace it was apparent that they did see at least a few of the posters.
Although we know that a majority of the participants in the high
value level definitely saw at least two of the posters, some of them
said they didn’t remember seeing any of them. The two posters in
this case were placed right in the path to the goal so they could
not be missed. This is a psychological aspect that we did not an-
ticipate but had been previously noted in similar work [Ruddle and
Lessels 2006]. For the reported views, 25.0% of the information
was reported as seen in the high and median levels with a standard
deviation of 5.8%. For both the high-quarter and low levels, 12.5%
of the information was reported as seen with a standard deviation
of 4.4%. The players reported seeing 0% of the information in the
low-quarter level.
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Figure 9: Self-reported Information Assimilation after Interactive
Session.

If we look at the number of posters that were physically seen com-
pared to how many they remembered, it is clear that the players are
not paying attention to the posters when they play the level. The
curve in Figure 8 clearly shows that the algorithm was indeed ef-
fective in placing the objects within the path of these new players.

The largest improvement can be seen between the high value and
low quarter value surfaces which yield a 58.3% improvement in
user observation.

Figure 10: Subject #32 outlier player trace with the poster loca-
tions circled.

There were several factors that we had not considered when de-
signing the study. The experienced gamers finished the level very
quickly and so they did not see most of the posters on the level.
They were also accustomed to ignoring in-game advertising or
other irrelevant information and were focused on finding the [IED—
context really does appear to be key in affecting observation. Also,
the nature of the task given to them (defusing an explosive device)
gives a natural sense of urgency that causes them to finish as fast as
possible.

6 Conclusions

The result from Figure 8 supports our hypothesis, because it clearly
show that the surfaces that had the highest information value were
seen by the users most often. We also discovered that non-essential
information artifacts seemingly are ignored or just not remembered.
In order for the users to retain the information they see in these
posters, we would probably need to make them more relevant to the
game. More work needs to be done on designing in-game adver-
tisements in order for them to be effective or they will be ignored.
However, the results are promising and despite the low rate of in-
formation retention it is clear that the players are at least exposed
to the high information value surfaces in the environment.

This work is currently biased by only 40 participants (eight for each
scenario), but this study is still ongoing. This preliminary results
clearly and strongly support our hypothesis that using prior ob-
servation under a specific context to determine surface observation
densities and derived information values of all game surfaces, this
data can be used to guide the placement of new information arti-
facts in accordance with desired observation results under the same
context.



7 Future Work

We have found several aspects of the HIIVVE tool and the study
that can be improved in the future. We would like to explore ways
in which, under the same constraints, we can get the players to no-
tice the information they are seeing. If we used posters that stand
out more from the environment, the players may have been able
to identify them more easily. For instance, the U.S. Army poster
might be blending a little too well with the overall theme of the
game and gets overlooked. Also, if we placed the goal in a harder
to reach place within the environment it would force the players to
explore the environment more and therefore increase the chances of
seeing the posters. Additional work will also be focused at devel-
oping subjective measures and qualitative guidelines to make sure
that information is not placed in a location that is bothersome for
the player or seems out of place. It would also be interesting to
evaluate subconscious observation of the poster contentmessage—
maybe the participants do actually remember some aspect of the
poster but not the poster itself.

We would also like to run HIIVVE on more initial player traces
to find more detailed information value data. Currently the algo-
rithm is not fast enough to calculate the information value for an
extremely large amount of player traces. We hope to speed up the
algorithm by doing intelligent interpolation between ray intersec-
tions. The core HIIVE algorithms are easy to run in parallel and are
well suited for cluster deployment. We had to run 4 parallel pro-
cesses on a quad-core machine to get the information value for 32
player traces in a reasonable amount of time. In the future we hope
to run many more player traces in parallel on a computing cluster
and then combine the results.
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